
From Imitation to Refinement – Residual RL for Precise Assembly

Lars Ankile1,2,3 Anthony Simeonov1,2 Idan Shenfeld1,2 Marcel Torne1,2 Pulkit Agrawal1,2

Chunked BC: Executes each action chunk open loop
Slight
imprecision...

Corrective
action

ResiP (ours): Revises actions every timestep

Sample plan at 1Hz

Revise at 10Hz

FAILURE

SUCCESS

...causes to
task failure

Augmenting BC plans with
 leads to reliable behavior

closed-loop
corrections

Despite and addressing
, chunked policies saturate

increasing data
distribution shifts

Fig. 1. Left: (Top) Tasks like assembly require long-horizon coordination and high-precision control, at which state-of-the-art
BC methods fail due to their chunk-level open-loop nature. (Bottom) Combining a BC trajectory planner with a closed-loop
residual policy trained with RL results in surprisingly robust and reactive behaviors. Right: Chunking improves performance
over standard policy architectures. Still, performance saturates despite increasing data and addressing distribution shifts with
DAgger [1]. Combining chunking with closed-loop corrections (ResiP) combines the strength of each.

Abstract— Recent advances in Behavior Cloning (BC) have
made it easy to teach robots new tasks. However, we find that
the ease of teaching comes at the cost of unreliable performance
that saturates with increasing data for tasks requiring precision.
The performance saturation can be attributed to two critical
factors: (a) distribution shift resulting from the use of offline
data and (b) the lack of closed-loop corrective control caused
by action chucking (predicting a set of future actions executed
open-loop) critical for BC performance.

Our key insight is that by predicting action chunks, BC
policies function more like trajectory “planners” than closed-
loop controllers necessary for reliable execution. To address
these challenges, we devise a simple yet effective method,
ResiP (Residual for Precise Manipulation), that overcomes the
reliability problem while retaining BC’s ease of teaching and
long-horizon capabilities. ResiP augments a frozen, chunked
BC model with a fully closed-loop residual policy trained with
reinforcement learning (RL) that addresses distribution shifts
and introduces closed-loop corrections over open-loop execution
of action chunks predicted by the BC trajectory planner. Videos,
code, and data: residual-assembly.github.io.

I. INTRODUCTION

Many robotic manipulation tasks, such as assembly, re-
quire both long-horizon planning and high-precision con-
trol, which remains a significant challenge [2]–[6]. As an
example, consider the furniture assembly task depicted in
Fig. 1 (Left), where the robot needs to perform a sequence
of steps: grasp, then re-orient the table leg into the correct
pose, insert the leg, and finally screw the leg into place. This
representative long-horizon task spans several task stages
over hundreds of timesteps, each dependent on the successful
completion of the previous. During critical moments such as

1Improbable AI Lab 2Massachusetts Institute of Technology 3Harvard
University ankile@mit.edu

insertions, called “bottleneck states,” even slight imprecisions
can compound and result in task failure, underscoring the
need for reliable execution of each phase.

Behavior cloning (BC) is a popular approach for teaching
robots various manipulation skills [6]–[16]. Recent innova-
tions in BC, such as diffusion models [17]–[20] and action
chunking (predicting a sequence of future actions) [6,17,19,
21], have enabled learning long-horizon, complex behaviors
from demonstrations [15,22]. However, our analysis shows
fundamental limitations in BC when applied to tasks requir-
ing high precision: performance saturates with increasing
data. For example, the success of a diffusion-based BC model
on an insertion task shown in Fig. 1 (Left) plateaus at ∼80%
even with 100,000 demonstrations (Fig. 1; right). Recent
work finds similar performance saturation [23]–[25].

We hypothesize that the performance saturation results
from two issues: (i) compounding errors originating from
distribution shift as the policy operates on states that increas-
ingly deviate from those seen during training [23]. (ii) The
use of action-chunking which enables long-horizon control
at the cost of reactivity necessary for reliable execution by
rolling out each action chunk open-loop [26]. Therefore, we
posit that chunked BC policies are best considered “planners”
rather than reactive controllers. For instance, in the one leg
assembly task shown in Fig. 1 (left), specific bottleneck
states, like insertions, require precise actions at specific
time steps. If these critical moments fall within an action
chunk, the BC policy cannot make real-time adjustments to
compensate for disturbances during execution or inaccuracies
in the planned actions.

Reinforcement Learning (RL) is a standard solution to
the suboptimal performance of BC polices [27]–[39]. RL

https://residual-assembly.github.io

fine-tuning effectively overcomes the problem of distribution
shifts by generating training data for states visited by the
policy. However, recent advancements in BC architectures
present new challenges for direct RL fine-tuning. The main
issues are that the structure of diffusion models (iterative
refinement) and action-chunked policies (resulting in a large
action space) make standard RL algorithms unstable (see
Sec. IV-A) or require significant architectural modifica-
tions [15,40,41].

Instead of invoking RL, one can overcome distribution
shift by leveraging an expert and training with supervised
learning such as the Dataset Aggregation (DAgger) [1] algo-
rithm. Our experiments show with roughly 2000 demonstra-
tions, a DAgger style approach achieves a 90% success rate
on the one leg task (Fig. 1)—a significant improvement
over pure BC but still 8% below the expert. One challenge
in using DAgger is that it assumes an expert who can be
queried on demand, which is usually unavailable. However,
another significant challenge is the performance saturation of
DAgger, which we attribute to the lack of reactivity because
each action chunk is executed in an open-loop fashion.

Our key insight is that action-chunked BC policies func-
tion more like “trajectory planners” than reactive controllers.
To mitigate both distribution shift and lack of closed-loop
control, we use a simple method of augmenting a frozen,
chunked BC model with a small, single-step residual pol-
icy [42]–[49] trained via on-policy RL (Fig. 2), termed
ResiP (Residual for Precise Manipulation). Unlike prior
residual frameworks, the BC policy generates trajectory
segments at coarse temporal resolution (∼1 second), while
the residual predicts closed-loop corrections at each control
step (∼0.1 second).
ResiP addresses both challenges faced by BC methods:

the RL-trained residual overcomes distribution shifts and
by closing the sensorimotor loop more frequently it lends
reactivity by enabling precise adjustments that chunked poli-
cies cannot provide. Using only a sparse task-completion
reward, this approach achieves a 98% success rate starting
with just 50 expert demonstrations on the one leg task—
an 18 percentage point improvement over BC with 100K
demonstrations.

Since our method relies on training RL policies, our
learning pipeline heavily relies on simulation. Applying our
pipeline requires constructing a digital twin of the real-world
use case (i.e., real-to-sim [16]), training with ResiP, and
finally transferring the trained policy to the real world. While
our focus in this paper is on ResiP and highlighting the
performance saturation of purely BC methods, our experi-
ments demonstrate the entire pipeline on several challenging
assembly tasks.

II. METHOD

Our method applies to any task that can be simulated using
already available assets (e.g., CAD models) or by scanning
real-world objects [16,50]. While this paper focuses on
assembly tasks for which CAD models are already available
for constructing simulation environments, our method applies

Correct
every
step

Action

chunk

Fig. 2. Overview of ResiP. A pretrained chunked base
policy predicts an action chunk of Ta future actions. For
every timestep, the residual model observes the current state
st and the predicted base action abase

t and predicts correction.

to many tasks of practical interest. Note that our method
requires CAD models only for training and not during
deployment.

Our approach from task definition to deployable vision
policy consists of three key components (see Fig. 3 for
an overview). First, we train a base policy using behavior
cloning (BC) on a small set of demonstrations (Sec. II-B)
in simulation. Then, we improve this policy’s precision by
training a residual component with reinforcement learning
that makes closed-loop corrections to the base policy’s
actions (Sec. II-C). Finally, we learn a real-world deployable
policy with policy distillation and co-training with a few real-
world demonstrations (Sec. II-D).

A. Problem Formulation

We formulate the target task as a discrete-time sequential
decision-making problem. At each timestep t, the robot
receives an observation ot ∈ O corresponding to the un-
derlying state st ∈ S of the robot and environment. Given
the observation, the policy outputs an action at ∈ A that is
executed in the environment. The action space A consists
of end-effector poses in SE(3) and gripper commands. The
state space includes the robot’s configuration (end-effector
pose, velocity, and gripper state) and the poses of all objects
in the scene. Task completion is defined through sparse task
completion rewards. We define this reward as an instanta-
neous signal that provides 1 at the timestep when a pair of
objects achieves a pre-defined relative pose corresponding
to successful assembly and 0 otherwise, including after
the alignment is maintained. See more details about the
environments in App. II-A.

B. Base Policy Learning via Behavior Cloning

For each task, we collect a dataset of 50 demonstrations
in simulation by teleoperating the robot, Dsim : {τ1, ..., τN}.
Each trajectory, τ , contains system states st, and robot
actions at, i.e., τi = {(st, a1), ..., (sT , aT)}, with T be-
ing the trajectory length. We use Dsim to first train base
policy πbase with Behavior Cloning (BC), i.e., πbase =
argmaxπbase E(at,st)∼Dsim [log πbase(at|st)] using the Diffusion
Policy (DP) architecture [19], which serves as the starting
point for Reinforcement Learning (RL). Consistent with
state-of-the-art in BC training [6,19], we use action chunks

Generate expert
trajectories

Render realistic and
diverse dataset

3

Collect a few real-world demos4
Co-train

Final real-world policy

Collect sim demos Acquire BC policy1 5

Improve policy with bootstrapped RL

Massively Parallel
Simulation

Update lightweight
residual on frozen base

2

Fig. 3. Sim-to-real pipeline. (1) Beginning with a policy trained with BC in simulation, (2) we train residual policies
with RL and sparse rewards. (3) We then distill the resulting behaviors into a policy operating from RGB images. (4) By
combining synthetic data with a small set of real demonstrations, (5) we deploy RGB-based policies in the real world.

that predict a set of multiple future actions instead of a single
action at every timestep. This chunking approach effectively
reduces the task horizon, enabling better performance on
long-horizon tasks, but as we show (Sec. IV-B), it sacrifices
the ability to make closed-loop corrections. We denote the
length of future action sequences predicted by the policy as
Ta, the output as at = [abase

t , ..., abase
t+Ta

]. When predicting
an action chunk at of length Ta, we only execute a subset
[abase

t , ..., abase
t+Texec

], with execution horizon Texec ≤ Ta. Simi-
lar to [19], we use Texec = 8, and Ta = 32 instead of their
16 as we empirically found it performs better.

C. Reactive Control via ResiP

Given the initial chunked base policy πbase obtained by BC
described above, we want to improve the policy to overcome
the issues of distribution shift and the lack of reactivity.
One way to mitigate the adverse effects of distribution
shifts is to fine-tune the BC-trained policy with RL [6]–
[16]. We side-step the complications of direct RL fine-
tuning of action-chunked policies (see discussion in Sec. II-
A) by training a residual [42]–[49] Gaussian Multi-Layer
Perceptron (MLP) [51] policy πres using PPO [52]. Our
key design choice is that while this residual framework
can address distribution shift through either chunk-level or
timestep-level corrections (see Sec. III-D.4 for analysis), the
latter enables reactivity helpful for precise manipulation.

For each timestep i = 0, ..., Ta − 1 within the base
policy’s action chunk, we form the residual’s observation by
concatenating the full simulation state (robot proprioceptive
information and object poses) with the base policy’s pre-
dicted action, sres

t+i = [st+i, a
baset+ i]. The residual policy

then produces a corrective action ares
t+i ∼ πres(·|sres

t+i) that
modifies the base action: at+i = abase

t+i + ares
t+i. The resulting

fine-tuned policy is a combination of the pre-trained BC
policy πbase and the correction policy πres, denoted π. As
demonstrated in Sec. IV-B.3, this per-timestep correction
capability is crucial for achieving reliable performance in
precision-critical tasks.

Fig. 4. Photorealistic rendering and domain randomization
for sim-to-real transfer. In the first row, we show our nominal
experiment setting of rendering parts in the original white
color while varying the position, brightness, and hue of the
lighting in the scene. In the bottom row, we also introduce
variations in the part colors to see how that can help the final
policy adapt to unseen part appearances without collecting
any additional data.

During training, as in any RL fine-tuning, one needs to
adjust the exploration noise to provide sufficient stochasticity
to discover new behaviors while maintaining enough preci-
sion for task success (see App. X-C for detailed analyses
of design choices). The residual policy uses orthogonal
initialization [53] with a small gain factor on the final layer,
ensuring uncorrelated initial corrections centered around
zero—a design choice that aligns with our assumption that
the base policy’s errors are unbiased in expectation. Since
most task failures stem from slight imprecisions in the base
policy’s actions, this architecture naturally leads to learning
small, targeted corrections around the base policy’s behavior.

The policy observation for simulation training, S contains
the 6 DoF end-effector pose T, spatial velocity V, and
gripper width wg, along with the 6-DoF poses of all the
parts in the environment {Tparti}num parts

i=1 .

D. Sim-to-Real Transfer

We treat πres trained in simulation using privileged state
information, S, as a teacher policy πteacher to distill into a
student policy πstudent that takes as input sensory observations

Fig. 5. Initial and goal states for our 6 tasks. The first three tasks, one leg, round table, and lamp, are from
the FurnitureBench [5] task suite. mug-rack we created by scanning objects and importing them into the simulation.
peg-in-hole is from the Factory [54] task suite. biman-insert we created using the simulation-based teleoperation
system DART [55]. Our task suite exhibits diverse challenges like long horizons, tight tolerances, bimanual control, and
multi-modal success criteria.

and can therefore be deployed in the real world [16,56]–[58].
The real world observation space O contains the robot end-
effector pose T ∈ SE(3), robot end-effector spatial velocity
V ∈ R6, the gripper width wg, and RGB images from a fixed
front-view camera (I front ∈ Rh×w×3) and a wrist-mounted
camera (Iwrist ∈ Rh×w×3), each with uncalibrated camera
poses.

For teacher-student distillation, we collect a dataset of suc-
cessful trajectories Dsynth = {τsynth,1, ..., τsynth,N}, τsynth,i =
{(s1, a1), ..., (sT , aT)}, from πteacher initialized with a di-
verse set of initial object poses. To bridge the sim-to-
real gap, we convert the trajectory dataset with only state
information (S) into trajectories with sensory observations
(O) by re-rendering the trajectories into realistic-looking
image observations (see Fig. 4 for examples). This ren-
dering process allows us to introduce visual variations—
including object colors, textures, lighting conditions, and
camera perspectives—that are not easily obtainable with
standard image augmentations or real-world data collection
(see App. III for examples and details). We denote this
rendered dataset as Dsynth-render.

πstudent is represented with a Diffusion Policy architec-
ture that uses ResNet18 [59] vision encoder pre-trained on
robotic manipulation data [60] (see App. I-A.3 for imple-
mentation details). To minimize the sim-to-real gap, we
combine a small set of real-world demonstrations Dreal (10-
40 trajectories) collected directly on the robot with synthetic
rendered trajectories from Dsynth-render (approximately 400
demonstrations) [16]. This synthetic-to-real data ratio pro-
vides increased domain coverage while not washing out real-
world demonstrations. The real demonstrations contain only
RGB observations and no ground-truth pose information.
This combined dataset Dreal ∪ Dsynth-render is used to train
the student policy πstudent with the same BC loss as in the
simulation-based experiments.

III. EXPERIMENTAL SETUP

A. Tasks and Environment

We evaluate our method on a set of challenging assem-
bly tasks of one leg, round table, and lamp from
the FurnitureBench [5] task suite, the peg-in-hole task
from [54], a custom mug-hanging task we call mug-rack,
and a custom bimanual precise insertion task we call
biman-insert. Examples of all tasks are shown in Fig. 5.
Visualizations of initial state distributions and detailed task
descriptions are provided in App. II, and task rollouts can
be seen on the website.

Multi-part tight-tolerance assembly interactions are simu-
lated using the SDF-based collision geometry representations
provided as part of the Factory [54] extension of Nvidia’s
IsaacGym simulator [61], with demos collected using a
SpaceMouse. The biman-insert task is implemented
using the MuJoCo simulator [62], with the demos provided
using the DART teleoperation system from [55].

We define a simple, sparse task-completion reward set
to 1 for each task when a pair of parts has been fully
assembled and 0 otherwise. For example, in the lamp task,
the policy receives two binary rewards: the first when the
bulb is fully screwed in and the second when the lamp shade
is successfully placed. Some of our tasks are long horizon
(up to ∼750-1000 steps at 10Hz) and require sequencing
of behaviors such as 6-Degree-of-Freedom (DoF) grasping,
reorientation, insertion, and screwing (see Fig. 1; Left).

B. System Configuration

The policy operates at 10Hz on a 7 Degrees-of-Freedom
(DoF) Franka Emika Panda robot arm for all tasks but
biman-insert, which operates at 50Hz on two Franka
Panda arms (i.e., 14 DoF). The action space consists of
the desired end-effector pose Tdes ∈ SE(3) (i.e., both
position and orientation) and a binary gripper command for
opening/closing the parallel-jaw gripper. These desired end-
effector poses are converted to joint position targets using

https://residual-assembly.github.io/
https://3dconnexion.com/us/product/spacemouse-wireless/

Methods one leg round table lamp mug-rack peg-in-hole biman-insert

Low Med Low Med Low Med Low Low Low

B
C

MLP-S 0 0 0 0 0 0 0 2 0
MLP-C 45 10 5 2 8 1 21 2 7
DP 54 26 12 4 7 2 26 5 33

R
L

PPO-C 70 28 38 6 32 2 23 4 30
IDQL 57 27 18 3 11 1 31 3 40
ResiP (ours) 98 76 94 77 97 70 88 99 93

TABLE I. Success rates (percentage of successful completions over 1024 evaluation episodes using each method’s best-
performing checkpoint) for different policy architectures across our task suite. Top: Baseline BC methods, where Diffusion
Policies (DP) generally outperform MLPs with chunking (MLP-C), while MLPs without chunking (MLP-S) are unable to
solve all tasks except peg-in-hole. Bottom: RL-based methods, where our proposed residual policy (ResiP) provides
significant improvements in success rates over the base BC policy, improvements not seen from the alternative RL methods.

differential inverse kinematics [63], then tracked using a low-
level PD controller running at 1KHz with manually specified
stiffness and dampening parameters lightly tuned to balance
compliance with accurate trajectory tracking.

C. Evaluation protocol

1) Primary Evaluation: We evaluate all methods by exe-
cuting the policy from an initial state sampled from the same
initial state distribution used for collecting demonstrations.
We follow the default randomization protocol used in Furni-
tureBench [5]: at the beginning of each episode, objects are
randomly offset from their nominal positions by ∆x,∆y ∈
[−1.5, 1.5] cm in the horizontal plane (with fixed height z)
for low randomization settings and by ∆x,∆y ∈ [−5, 5]
cm for medium randomization. For the U-shaped fixture
used to stabilize parts during assembly (the three-sided white
“wall” surrounding the parts in the left-most three columns
in Fig. 5), we apply additional offsets of ∆x,∆y ∈ [−2, 2]
cm and ∆x,∆y ∈ [−4, 4] cm from its nominal position for
low and medium settings respectively.

We define task success as achieving the target geometric
alignment between pairs of parts, as specified by the task
reward function in Sec. II-A. For each method, we report the
success rate calculated over 1024 evaluation episodes using
the best-performing checkpoint, as our goal is to demonstrate
the potential capabilities of each architectural approach rather
than average performance across training runs.

2) Robustness to Dynamic Disturbances: To further eval-
uate robustness to dynamic disturbances, we also perform a
version of the above evaluation that includes random force
perturbations during policy execution. At each timestep, we
randomly sample 1% of the objects in the environment and
apply a perturbation corresponding to the same randomiza-
tion described above for initialization. These perturbations
simulate unexpected contact forces and dynamic disturbances
not seen during training. We evaluate each method’s per-
formance degradation under these conditions by comparing
success rates with/without perturbations across 1024 rollouts.

3) Real-World Evaluation Protocol: For sim-to-real trans-
fer, we use IsaacSim [64] to render photorealistic trajectories
of our simulation data, as it provides better rendering ca-
pabilities than IsaacGym [61]. We evaluate policies across

a grid of initial object and obstacle poses for real-world
experiments that match our low randomization simulation
setting (∆x,∆y ∈ [−1.5, 1.5] cm). We perform 10 trials for
each method and ensure that each method is tested on the
same initial object states. Success criteria remain consistent
with our simulation experiments: achieving target geometric
alignment between assembly parts.

D. Baselines and Ablations

We evaluate our method against several baselines to ana-
lyze the importance of action chunking, policy architecture,
and closed-loop control learned with Reinforcement Learn-
ing (RL). Implementation details and hyperparameters are
provided in App. I.

1) Behavior Cloning Baselines: We first evaluate the
impact of action chunking by comparing a standard Behavior
Cloning (BC) approach using an MLP (MLP-S) with a
version that predicts action chunks (MLP-C). We find the
Diffusion Policy architecture [19] provides the strongest BC
performance and use it as both our primary baseline and the
foundation for ResiP.

2) Distribution Shift Analysis: To assess the impact of
distribution shifts, we implement DP-DAgger [1], which
iteratively queries an expert policy to gather corrective
demonstrations in states visited by the learned policy. Our
experiments use ResiP as the expert. The DAgger policy is
trained with the same BC loss and architecture as the nominal
DP policy.

3) Reinforcement Learning Comparisons: Building on
our BC policies, we compare two approaches for RL fine-
tuning. First, we evaluate PPO fine-tuning of our chunked
MLP policy (PPO-C) [52], treating each action chunk as a
single concatenated action. For our diffusion-based policy,
we implement IDQL [65], where multiple action chunks are
sampled from the diffusion policy and selected based on
learned Q-values using the on-policy method of [66].

4) Closed-Loop Control Ablation: To study the impor-
tance of per-timestep corrections, we implement ResiP-C,
a variant of our method that predicts residual corrections
at the same frequency as the base policy’s action chunks.
While the standard ResiP observes the current state and
predicts a correction for each timestep, ResiP-C observes

102 103 104

Number of Demonstrations

0

25

50

75

100
Su

cc
es

s R
at

e
(%

)

round_table
ResiP (Ours)
DP-DAgger
DP
MLP-S

Fig. 6. Scaling behavior comparison on the harder
round table task mirrors the trends observed for
one leg (Fig. 1 (right)), but with lower overall perfor-
mance. Just as in one leg, increasing the number of
demonstrations for BC training leads to diminishing returns,
saturating at 56% success rate. While DAgger’s online data
collection performs better, it also plateaus at 71%, well below
ResiP’s 94% success rate. This consistent pattern across
tasks, with lower saturation points for the more complex
tasks, highlights the limitations of offline approaches and
the benefits of learning closed-loop control online.

the current state and all actions in the predicted chunk and
predicts a correction of all actions in the chunk. ResiP-
C uses the same online PPO training procedure as ResiP.
This chunked correction makes the learning problem more
challenging as the residual policy predicts corrections for
future timesteps without access to the intermediate states.
See Sec. X-A for details.

5) Real-World Baselines: We compare the real-world per-
formance of two policies: (1) Real-Only: Diffusion policies
trained exclusively on real-world demonstrations Dreal, using
either 10 or 40 demonstrations, e.g., denoted 10 Real-Only.
(2) Real+Sim: Following our sim-to-real approach described
in Sec. II-D, we combine the same real-world demonstra-
tions with our synthetic rendered dataset, e.g., denoted 10
Real+Sim.

IV. EXPERIMENTAL RESULTS

Our experimental evaluation focuses on three key as-
pects. First, we analyze how augmenting chunked Behavior
Cloning (BC) policy with closed-loop residual Reinforce-
ment Learning (RL) enables reliable execution of precision-
critical manipulation tasks (Sec. IV-A). Second, through
ablation studies, we identify design choices crucial for
ResiP’s performance gains (Sec. IV-B). Finally, we evaluate
our method on physical robot hardware (Sec. IV-C), demon-
strating improved real-world performance through teacher-
student distillation while analyzing distillation bottlenecks.

A. Augmenting Trajectory Planning with Reactive Control

In simulation experiments, we evaluate the fundamental
limitations of state-of-the-art BC methods on precision-
critical tasks. Using a suite of 6 assembly tasks and 50

Fig. 7. Examples of the common failures of our DP policies
in tasks requiring precise part alignments. These failures
can be mitigated by small corrections, making our residual
framework, ResiP, well-suited to improve the reliability of
the nominal DP policy.

demonstrations per task, we find that the Diffusion Policy
(DP) architecture struggles with high-precision requirements.
Using the round table task as an example, DP achieves
a 12% success rate with 50 demonstrations. Increasing
the number of demonstrations naturally improves perfor-
mance. However, as shown in Fig. 6, scaling to 10,000
demonstrations only improves performance to 56% on the
round table task. Another potential solution is address-
ing the distribution shift through online data collection.
While our DAgger implementation shows improved perfor-
mance over pure BC, it plateaus at 71% success on the
round table task, still falling significantly short of expert-
level performance (similar scaling behavior is observed for
the one leg task, see Fig. 1 (Right)).

Our residual learning approach, ResiP, addresses these
limitations with closed-loop control learned with RL. Start-
ing from the same 50 demonstrations, ResiP achieves 94%
on round table (up from 12%) and 98% success on
one leg (up from 54%), showing significant gains over
the alternatives. The most dramatic improvement is seen
in the peg-in-hole task, where success rates increase
from 5% to 99%, highlighting the particular effectiveness of
our method when precise local corrections are the primary
challenge. Tab. I shows comparisons across our task suite,
demonstrating ResiP’s consistent advantages over both BC
baselines and alternative RL methods.

1) Analyzing Failure Modes: To understand where the
large performance improvements stem from, we analyzed
failure modes of the DP policies, shown in Fig. 7 and Fig. 1
(Left). In the low randomization setting, we observe that
DP’s failures primarily arise from small imprecisions: a com-
mon error is pushing the leg down before achieving perfect
alignment with the hole. Consequently, the object’s pose
shifts slightly in the gripper, causing an out-of-distribution
grasp pose. The residual policy reliably corrects these errors
through minimal adjustments: performing small sideways

0 20 40 60 80 100
Percentage of Total Failures

ResiP

DP 40.3%
(27)

55.6%
(10)

29.9%
(20)

33.3%
(6)

22.4%
(15)

11.1%
(2)

7.5%
(5)

Peg
Precision

Foot
Precision

Out of
Distribution Other

Fig. 8. A qualitative analysis of the failure modes between
the pre-trained BC policy and the fine-tuned residual policy
for the round table task on medium randomness. For
the pre-trained policy, a large portion of the failures (40%)
relates to the table leg’s insertion precision. In the fine-tuned
policy, this share dropped to 0%.

translations while avoiding premature downward force, only
allowing insertion once proper alignment is achieved. We
also find that the residual policy makes subtle improvements
to initial grasps, enabling more precise downstream align-
ment between the grasped object and the receptacle. Based
on these observations, we posit that ResiP’s significant
performance improvements stem from its ability to provide
small adjustments in crucial moments—a natural fit for
precision assembly tasks where minor misalignments often
cause failure. While the base DP policy struggles with precise
alignments and insertions, the learned residual component
maintains proper alignment through minimal corrections.

However, the performance saturates at 70%-77% in the
medium randomization settings, with parts initialized up to
±5cm from nominal positions. This performance drop aligns
with the intuition of the residual policy as improving preci-
sion and reactivity primarily as a local correction mechanism.
When parts are placed far from their nominal positions, the
DP policy may generate trajectories that deviate too far for
the local correction mechanism to correct, leading to failures
that are not easily corrected. Even if the failures can be
corrected, the resulting states may be out-of-distribution for
the DP policy, making corrections infeasible.

To better understand the failure modes of DP and ResiP
in this higher randomness setting, we manually analyzed 75
randomly sampled trajectories for the round table task
on medium randomness (see the website for videos). We
categorized the observed failures into four primary types:

1) ‘Peg Precision’ failures that occur during picking, in-
serting, or screwing operations with the table leg

2) ‘Foot Precision’ failures during picking, inserting, or
screwing the table foot

3) ‘Out-of-Distribution’ failures when parts are unreach-
able by the base policy

4) ‘Other’ failures are attributed to contact-modeling issues
in simulation (e.g., object penetration causing unrealistic
accelerations) or timeout conditions.

0 20 40 60 80 100

Su
cc

es
s R

at
e

(%
)

73% -19 92%
ResiP-C

64% -26 90%
DP-DAgger

32% -20 52%
DP

86% -12 98%
ResiP (Ours)

Nomimal
Perturbed

Fig. 9. Performance robustness when introducing random
force perturbations during evaluation. At each timestep, we
randomly apply forces to the objects in the environment,
simulating unexpected disturbances. Our method (ResiP),
which makes per-timestep corrections, shows greater re-
silience with only a 12% performance drop compared to
nominal conditions. In contrast, chunk-based methods (DP,
DP-DAgger, and ResiP-C) see larger drops of 19-26%. This
difference in robustness highlights the value of closed-loop
control for handling dynamic disturbances not seen during
training. All methods were evaluated across 1024 episodes,
both with and without perturbations.

Our qualitative analysis of these failure modes and recov-
ery behaviors for the round table task, shown in Fig. 8,
shows that ResiP significantly improves reliability during
precise insertion phases compared to the baseline approach,
and eliminates the precision errors for “Peg Precision” en-
tirely but that the ‘Out-of-Distribution’ increases in share.

Surprisingly, ResiP also leads to the emergence of qual-
itatively different behaviors compared to the nominal DP
policy. We refer to the website’s uncut videos of rollouts
for both policies. In these videos, we observe that ResiP
has discovered alternative grasping strategies not present in
the demonstration data—while demonstrations only showed
grasping the table foot from above its center, ResiP learned
to grasp from the side when the center was unreachable. Ad-
ditionally, ResiP exhibits more decisive recovery behaviors,
making deliberate adjustments that lead to successful task
completion where the nominal BC policy would ineffectively
oscillate back and forth.

B. What drives performance of ResiP?

This section investigates different aspects of ResiP that
improve task performance: (1) training stability and sample
efficiency across RL methods, (2) the impact of addressing
distribution shift through online data collection, (3) the
benefits of closed-loop control compared to chunk-based
execution, and (4) robustness to dynamic perturbations.

1) Performance and Training Characteristics of RL Meth-
ods: Our residual learning approach, ResiP, significantly
improves upon baseline methods across all tasks. Using 50
demonstrations per task, where ResiP achieved 98% on the
one leg task (Tab. I), the alternative RL approaches show
more limited improvement of 70% for PPO-C and 57% for

https://residual-assembly.github.io/
https://residual-assembly.github.io/

Training data Corner Grasp Insert Screw Complete

Part Obs Part Obs Part Obs Part Obs Part Obs

10 Real-Only 5/10 5/10 5/10 7/10 2/10 3/10 0/10 2/10 0/10 2/10
10 Real+Sim 9/10 9/10 7/10 8/10 0/10 3/10 0/10 3/10 0/10 3/10

40 Real-Only 10/10 8/10 9/10 8/10 6/10 3/10 2/10 3/10 2/10 3/10
40 Real+Sim 10/10 10/10 9/10 10/10 6/10 7/10 5/10 6/10 5/10 6/10

TABLE II. Comparing the effect of combining real-world demonstrations with simulation trajectories from our RL-trained
residual policies. Co-training with real and synthetic data improves motion quality and success rate on the one leg task.

(A)

(B)

Fig. 10. (A) Examples of successful real world assembly from RGB. Co-training with simulation data reduces jerkiness
and improves insertion robustness by containing a higher diversity of part poses and insertion locations (see Table II). (B)
Example failure: difficulty adjusting the insertion angle/position when grasps lead to unseen in-hand part poses.

IDQL. Similar trends hold for all tasks as seen in Tab. I.
We also see distinct training characteristics across meth-

ods. PPO-C, which directly fine-tunes the chunked MLP
policy, exhibits training instability and requires careful KL
regularization to avoid collapse [67]–[69]. IDQL faces a
different challenge: even with maximum stochasticity in the
denoising process, the base DP model produces actions with
insufficient variance for effective exploration, limiting the
potential for Q-learning-based improvement.

In contrast, ResiP demonstrates stable training behavior.
Its architecture naturally constrains corrections to be local ad-
justments to the base policy’s absolute pose predictions rather
than operating in the full workspace coordinate frame. This
local prediction scope, combined with the residual network’s
small parameter count, prevents the large policy updates that
typically destabilize deep RL training [70,71]. This stability
provides consistent performance across hyperparameters (see
Fig. 28 in App. X-C) and enables multiple gradient steps per
collected trajectory, improving sample efficiency.

2) Impact of Distribution Shift: To probe the impact of
mitigating distribution shift, we compared the baseline DP
against DP-DAgger trained using online data collection via
DAgger [72] as described in Sec. III-D. While DP-DAgger
significantly outperforms the baseline DP (see yellow vs. red

lines in Fig. 1 (right) and Fig. 6), it still trails ResiP (blue
line) by 9% and 23% for the one leg and round table
tasks, respectively. The remaining performance gap suggests
that reducing distribution shift with online data collection
does not fully explain ResiP’s performance benefits.

3) Impact of Closed-Loop Control: To quantify the bene-
fits of per-timestep corrections, we compared ResiP against
ResiP-C, which predicts corrections at the chunk level
as described in Sec. III-D.4. Our experiments reveal that
chunk-level corrections lead to significantly slower learning
progress, with ResiP-C requiring significantly more en-
vironment interactions to achieve comparable performance
(Fig. 26 in App. X-A). Moreover, even with extended train-
ing, ResiP-C’s performance saturates at 92% compared to
ResiP’s 98% on the one leg task. This performance gap
suggests that the ability to make frequent corrections accel-
erates learning and enables higher terminal performance.

4) Robustness to Dynamic Perturbations: To further eval-
uate the benefits of closed-loop control, we compare the
performance degradation of different methods under dynamic
disturbances as described in Sec. III-C. As shown in Fig. 9,
methods using chunk-based execution—DP, DP-DAgger, and
ResiP-C—experience significant performance drops of 19-
26 percentage points under these perturbations. In contrast,

(A) *velocity limit* *velocity limit* *velocity limit*

(B)

Fig. 11. (A) When changing the part appearances from
white to black, the policy trained on real data only (Real-
Only) seizes to function. The behavior becomes erratic, and
all trials ended with the robot hitting a velocity limit. (B)
When mixing in synthetic data with more diverse colors (see
Fig. 4), the policy (Real+Sim) regains the ability to complete
the task, though with lower performance than for white parts.

ResiP, with its ability to make per-timestep corrections,
maintains a more robust performance with a 12% drop. This
significant difference in robustness (7-14 percentage points)
provides further evidence for the value of closed-loop control
in precise manipulation tasks.

C. Real-World Deployment

1) Real-World Performance: In our sim-to-real experi-
ments, following the protocol described in Sec. III-C, we
find that the Real+Sim policies achieve significantly higher
success rates (50-60%) compared to Real-Only baselines (20-
30%) on the one leg task (Tab. II). Qualitatively, the co-
trained policy (Real+Sim) exhibits smoother behavior with
fewer erratic movements that exceed robot hardware limits.
Fig. 10 shows typical behaviors: Row (A) shows success-
ful assembly sequences, while Row (B) demonstrates the
primary failure mode—imprecise alignment before release,
mirroring challenges observed in simulation.

To assess robustness to visual variations, we tested chang-
ing part colors from the white used in data collection to
an unseen black. Unsurprisingly, the Real-Only policy fails
catastrophically, triggering velocity limits on every trial, as
shown in Fig. 11 (A). In contrast, Real+Sim, trained with the
same real-world data but with color-randomized synthetic
data (see Fig. 4; bottom), maintains basic functionality
though with reduced performance compared to the original
color scheme. While highlighting the benefits of synthetic
data, this also indicates opportunities for improving sim-to-
real transfer. See App. V-B for more detailed analysis.

2) Understanding Performance Limitations: To under-
stand the gap between simulation and real-world perfor-
mance, we hypothesize three potential limiting factors: (1)
the change from state- to vision-based observations, (2)
the sim-to-real gap, and (3) the policy distillation process.
Comparative experiments between image and state-based stu-
dents show similar performance gaps from the teacher’s 98%
success rate (Fig. 12), ruling out the change in observation
modality as the primary bottleneck. Furthermore, our scaling
analysis shows that even increasing synthetic trajectories

0 20 40 60 80 100

DP

ResiP
(ours)

Vision Policy State Policy

Fig. 12. A comparison of performance between state and
vision policies in policy distillation. The Diffusion Policy
(DP) baseline achieves similar performance with both state
and vision inputs when trained directly on the same 50
demonstrations (left), indicating that the vision modality
does not inherently limit performance. However, we observe
a significant performance gap when distilling our state-
based ResiP policy into a vision-based policy (right). This
consistent performance gap suggests the challenge lies in the
distillation process rather than the vision modality, as direct
vision-based training shows no such degradation.

from 10k to 100k only marginally improves success rates
from 78% to 80% (Fig. 1; Right), indicating a fundamental
limitation in the policy distillation process itself rather than
purely sim-to-real challenges. These findings motivate future
investigations into better approaches for vision-based policy
distillation, particularly focusing on online learning and
closed-loop control. See App. V-A for detailed analysis.

V. RELATED WORKS

A. Training diffusion models with reinforcement learning

A fundamental challenge in applying RL to diffusion
models is that the final action probabilities are not directly
accessible due to the iterative nature of the denoising process,
making policy gradient methods difficult to apply. Recent
work has explored various approaches to combining diffusion
models with RL [40,41,73]–[75]. Some approaches cast
diffusion de-noising as a Markov Decision Process [40,74],
enabling preference-aligned image generation with policy
gradient RL, but suffer from training instability. While [41]
introduced more stable direct diffusion policy fine-tuning,
their method remains architecture-specific and lacks closed-
loop control.

Other approaches include Q-function-based importance
sampling [65], advantage weighted regression [76], and
return-conditioned supervised learning [17,18,77]. Some
methods augment the denoising objective with Q-function
maximization [78] or iteratively update the dataset using Q-
functions [79]. However, these approaches mainly enable
better extraction or stitching of existing behaviors rather
than learning new, corrective behaviors. Recent work on
training diffusion policies from scratch [75] uses complex
mechanisms like unsupervised clustering and Q-learning
ensembles for multi-modal behavior discovery.

Beyond the iterative denoising challenge, modern BC ap-
proaches introduce additional complications through action
chunking, where policies predict sequences of multiple future
actions. While this improves BC performance, it creates
significant challenges for RL fine-tuning by expanding the
action space—for instance, chunks of 8 actions result in an 8-
fold increase in action dimensionality. This issue affects most
modern BC architectures like ACT [6,15], as they rely on
action chunking. Policy gradient methods struggle with such
high-dimensional action spaces, particularly when applied to
deep neural networks [80]. Furthermore, recent work shows
that RL fine-tuning of large pre-trained models can lead
to forgetting of pre-training capabilities [81]. Our method
avoids these problems by keeping the base policy frozen
and training only a small residual model, which preserves
the pre-trained capabilities and enables stable policy gradient
training with closed-loop control.

B. Residual learning in robotics

Learning corrective residual components in conjunction
with learned or non-learned “base” models has been widely
successful in robotics. Common frameworks include learning
residual policies that correct for errors made by a nominal be-
havior policy [42]–[49] and combining learned components
to correct for inaccuracies in analytical models for physical
dynamics [82]–[84] or sensor observations [85]. Unlike prior
residual policy learning approaches, our method uniquely
combines RL-based training with running the base at a lower
frequency, with the residual providing corrections at every
control step.

Residual policies have been used in insertion applica-
tions [86], and recent work has applied residual policy
learning to the same FurnitureBench task suite we study in
this paper [87]. Their approach uses the residual component
to model online human-provided corrections via supervised
learning, whereas we train our residual policy from scratch
with RL using task rewards in simulation.

VI. DISCUSSION

The local nature of our residual policies is designed
to complement rather than replace the trajectory planning
capabilities of the base policy. While this design enables
precise corrections, our approach still relies on the base
policy for macro-level behaviors. As such, our proposed

method struggles in regimes with very high initial scene
randomness, as both the base policies and actions produced
via RL exploration struggle to deal with out-of-support initial
part poses. Our imitation learning scaling analyses were
conducted using a dataset from an RL expert, not human
demonstrations. These two demonstration sources will likely
have different distributions, which may change the analyses.
However, acquiring 100k demonstrations from a human
demonstrator was not feasible in the present work. Further-
more, despite showcasing the advantage of incorporating
simulation data, sim-to-real for vision-based policies still
presents a challenge. There remains a performance gap in
both teacher-student distillation and sim-to-real distribution
shifts. Future investigations may include better sim-to-real
transfer techniques, exploration mechanisms for discover-
ing how to correct large-scale execution errors, tractable
interactive learning for real-world policy distillation, and
incorporating inductive biases (like [88]) that help generalize
to broader initial state distributions.

ACKNOWLEDGMENTS

This work was partly supported by the Sony Research
Award, the US Government, and the Hyundai Motor Com-
pany. The computations in this paper were run on the FASRC
cluster, supported by the FAS Division of Science Research
Computing Group at Harvard University, and on the MIT
Supercloud [89]. Experiment tracking and model checkpoint
storage were provided by Weights and Biases.

Author Contributions

LA led the project and implemented most of the code
and training infrastructure, including the main residual PPO
implementation, and is the primary author.

AS helped conceive of and advise on project goals, led
deployment on real hardware and sim-to-real rendering, and
helped write the paper.

IS led the implementation of reinforcement learning base-
lines, helped debug residual PPO implementation, and helped
write the paper.

MT provided valuable insights, recommendations, and
discussions on reinforcement learning fine-tuning and sim-
to-real transfer.

PA advised the project and provided valuable feedback on
project framing, contributions, and writing.

https://wandb.ai/

REFERENCES

[1] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” in
Proceedings of the fourteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Pro-
ceedings, 2011, pp. 627–635.

[2] K. Kimble, K. Van Wyk, J. Falco, E. Messina, Y. Sun, M. Shi-
bata, W. Uemura, and Y. Yokokohji, “Benchmarking protocols for
evaluating small parts robotic assembly systems,” IEEE robotics and
automation letters, vol. 5, no. 2, pp. 883–889, 2020.

[3] F. Suárez-Ruiz and Q.-C. Pham, “A framework for fine robotic
assembly,” in 2016 IEEE international conference on robotics and
automation (ICRA). IEEE, 2016, pp. 421–426.

[4] Y. Lee, E. S. Hu, and J. J. Lim, “Ikea furniture assembly environment
for long-horizon complex manipulation tasks,” in 2021 ieee interna-
tional conference on robotics and automation (icra). IEEE, 2021,
pp. 6343–6349.

[5] M. Heo, Y. Lee, D. L. Kaist, and J. J. Lim, “FurnitureBench:
Reproducible Real-World Benchmark for Long-Horizon Complex
Manipulation,” RSS 2023, 2023, arXiv: 2305.12821v1. [Online].
Available: https://clvrai.com/furniture-bench

[6] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning Fine-
Grained Bimanual Manipulation with Low-Cost Hardware,” in Pro-
ceedings of Robotics: Science and Systems, Daegu, Republic of
Korea, July 2023.

[7] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Advances in neural information processing systems, vol. 1,
1988.

[8] S. Schaal, “Learning from Demonstration,” in Advances in Neural
Information Processing Systems, vol. 9. MIT Press, 1996.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
1996/hash/68d13cf26c4b4f4f932e3eff990093ba-Abstract.html

[9] ——, “Is imitation learning the route to humanoid robots?” Trends
in cognitive sciences, vol. 3, no. 6, pp. 233–242, 1999.

[10] N. Ratliff, J. A. Bagnell, and S. S. Srinivasa, “Imitation learning for
locomotion and manipulation,” in 2007 7th IEEE-RAS international
conference on humanoid robots. IEEE, 2007, pp. 392–397.

[11] P. Agrawal, Computational sensorimotor learning. University of
California, Berkeley, 2018.

[12] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg,
and P. Abbeel, “Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation,” in 2018 IEEE international
conference on robotics and automation (ICRA). IEEE, 2018, pp.
5628–5635.

[13] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[14] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch,
S. Levine, and C. Finn, “Bc-z: Zero-shot task generalization with
robotic imitation learning,” in Conference on Robot Learning.
PMLR, 2022, pp. 991–1002.

[15] M. Drolet, S. Stepputtis, S. Kailas, A. Jain, J. Peters, S. Schaal,
and H. B. Amor, “A comparison of imitation learning algorithms
for bimanual manipulation,” IEEE Robotics and Automation Letters,
2024.

[16] M. Torne, A. Simeonov, Z. Li, A. Chan, T. Chen, A. Gupta,
and P. Agrawal, “Reconciling reality through simulation: A real-
to-sim-to-real approach for robust manipulation,” arXiv preprint
arXiv:2403.03949, 2024.

[17] M. Janner, Y. Du, J. B. Tenenbaum, and S. Levine, “Planning
with Diffusion for Flexible Behavior Synthesis,” Dec. 2022,
arXiv:2205.09991 [cs]. [Online]. Available: http://arxiv.org/abs/
2205.09991

[18] A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and
P. Agrawal, “Is Conditional Generative Modeling all you need
for Decision-Making?” Jul. 2023, arXiv:2211.15657 [cs]. [Online].
Available: http://arxiv.org/abs/2211.15657

[19] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and
S. Song, “Diffusion Policy: Visuomotor Policy Learning via Action
Diffusion,” Jun. 2023, arXiv:2303.04137 [cs]. [Online]. Available:
http://arxiv.org/abs/2303.04137

[20] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun,
R. Georgescu, S. V. Macua, S. Z. Tan, I. Momennejad,
K. Hofmann, and S. Devlin, “Imitating Human Behaviour with

Diffusion Models,” Mar. 2023, arXiv:2301.10677 [cs, stat]. [Online].
Available: http://arxiv.org/abs/2301.10677

[21] L. Lai, A. Z. Huang, and S. J. Gershman, “Action chunking as policy
compression,” PsyArXiv, 2022.

[22] L. Ankile, A. Simeonov, I. Shenfeld, and P. Agrawal, “Juicer: Data-
efficient imitation learning for robotic assembly,” arXiv preprint
arXiv:2404.03729, 2024.

[23] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,”
in Proceedings of the thirteenth international conference on artifi-
cial intelligence and statistics. JMLR Workshop and Conference
Proceedings, 2010, pp. 661–668.

[24] A. Yu, G. Yang, R. Choi, Y. Ravan, J. Leonard, and P. Isola,
“Lucidsim: Learning agile visual locomotion from generated images,”
in 8th Annual Conference on Robot Learning, 2024.

[25] T. Z. Zhao, J. Tompson, D. Driess, P. Florence, S. K. S. Ghasemipour,
C. Finn, and A. Wahid, “ALOHA unleashed: A simple recipe for
robot dexterity,” in 8th Annual Conference on Robot Learning, 2024.
[Online]. Available: https://openreview.net/forum?id=gvdXE7ikHI

[26] Y. Liu, J. I. Hamid, A. Xie, Y. Lee, M. Du, and C. Finn, “Bidirectional
decoding: Improving action chunking via closed-loop resampling,”
arXiv preprint arXiv:2408.17355, 2024.

[27] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning Complex Dexterous Manip-
ulation with Deep Reinforcement Learning and Demonstrations,” in
Proceedings of Robotics: Science and Systems (RSS), 2018.

[28] S. James and A. J. Davison, “Q-attention: Enabling efficient learning
for vision-based robotic manipulation,” IEEE Robotics and Automa-
tion Letters, vol. 7, no. 2, pp. 1612–1619, 2022.

[29] Y. Lu, K. Hausman, Y. Chebotar, M. Yan, E. Jang, A. Herzog,
T. Xiao, A. Irpan, M. Khansari, D. Kalashnikov et al., “Aw-opt:
Learning robotic skills with imitation andreinforcement at scale,” in
Conference on Robot Learning. PMLR, 2022, pp. 1078–1088.

[30] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine, “Efficient online
reinforcement learning with offline data,” in International Conference
on Machine Learning. PMLR, 2023, pp. 1577–1594.

[31] S. Schaal, “Learning from demonstration,” Advances in neural infor-
mation processing systems, vol. 9, 1996.

[32] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Overcoming exploration in reinforcement learning with demon-
strations,” in 2018 IEEE international conference on robotics and
automation (ICRA). IEEE, 2018, pp. 6292–6299.

[33] M. Nakamoto, S. Zhai, A. Singh, M. Sobol Mark, Y. Ma, C. Finn,
A. Kumar, and S. Levine, “Cal-ql: Calibrated offline rl pre-training
for efficient online fine-tuning,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[34] I. Uchendu, T. Xiao, Y. Lu, B. Zhu, M. Yan, J. Simon, M. Bennice,
C. Fu, C. Ma, J. Jiao et al., “Jump-start reinforcement learning,” in
International Conference on Machine Learning. PMLR, 2023, pp.
34 556–34 583.

[35] H. Hu, S. Mirchandani, and D. Sadigh, “Imitation bootstrapped
reinforcement learning,” arXiv preprint arXiv:2311.02198, 2023.

[36] Q. Zheng, A. Zhang, and A. Grover, “Online decision transformer,”
in international conference on machine learning. PMLR, 2022, pp.
27 042–27 059.

[37] J. Kober and J. Peters, “Imitation and reinforcement learning,” IEEE
Robotics & Automation Magazine, vol. 17, no. 2, pp. 55–62, 2010.

[38] R. Ramrakhya, D. Batra, E. Wijmans, and A. Das, “Pirlnav: Pretrain-
ing with imitation and rl finetuning for objectnav,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 17 896–17 906.

[39] A. Singh, H. Liu, G. Zhou, A. Yu, N. Rhinehart, and S. Levine,
“Parrot: Data-driven behavioral priors for reinforcement learning,”
arXiv preprint arXiv:2011.10024, 2020.

[40] K. Black, M. Janner, Y. Du, I. Kostrikov, and S. Levine, “Train-
ing diffusion models with reinforcement learning,” arXiv preprint
arXiv:2305.13301, 2023.

[41] A. Z. Ren, J. Lidard, L. L. Ankile, A. Simeonov, P. Agrawal,
A. Majumdar, B. Burchfiel, H. Dai, and M. Simchowitz, “Diffusion
policy policy optimization,” arXiv preprint arXiv:2409.00588, 2024.

[42] T. Silver, K. Allen, J. Tenenbaum, and L. Kaelbling, “Residual policy
learning,” arXiv preprint arXiv:1812.06298, 2018.

[43] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A.
Ojea, E. Solowjow, and S. Levine, “Residual reinforcement learning
for robot control,” in 2019 international conference on robotics and
automation (ICRA). IEEE, 2019, pp. 6023–6029.

https://clvrai.com/furniture-bench
https://proceedings.neurips.cc/paper_files/paper/1996/hash/68d13cf26c4b4f4f932e3eff990093ba-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/1996/hash/68d13cf26c4b4f4f932e3eff990093ba-Abstract.html
http://arxiv.org/abs/2205.09991
http://arxiv.org/abs/2205.09991
http://arxiv.org/abs/2211.15657
http://arxiv.org/abs/2303.04137
http://arxiv.org/abs/2301.10677
https://openreview.net/forum?id=gvdXE7ikHI

[44] M. Alakuijala, G. Dulac-Arnold, J. Mairal, J. Ponce, and C. Schmid,
“Residual reinforcement learning from demonstrations,” arXiv
preprint arXiv:2106.08050, 2021.

[45] T. Davchev, K. S. Luck, M. Burke, F. Meier, S. Schaal, and
S. Ramamoorthy, “Residual learning from demonstration: Adapting
dmps for contact-rich manipulation,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 4488–4495, 2022.

[46] J. Carvalho, D. Koert, M. Daniv, and J. Peters, “Residual robot
learning for object-centric probabilistic movement primitives,” arXiv
preprint arXiv:2203.03918, 2022.

[47] N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto, “Behavior
transformers: Cloning k modes with one stone,” Advances in neural
information processing systems, vol. 35, pp. 22 955–22 968, 2022.

[48] S. Haldar, J. Pari, A. Rai, and L. Pinto, “Teach a robot to fish: Ver-
satile imitation from one minute of demonstrations,” arXiv preprint
arXiv:2303.01497, 2023.

[49] S. Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah, and
L. Pinto, “Behavior generation with latent actions,” arXiv preprint
arXiv:2403.03181, 2024.

[50] M. T. Villasevil, A. Jain, V. Macha, J. Yuan, L. L. Ankile, A. Sime-
onov, P. Agrawal, and A. Gupta, “Scaling robot-learning by crowd-
sourcing simulation environments,” in RSS 2024 Workshop: Data
Generation for Robotics, 2024.

[51] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” nature, vol. 323, no.
6088, pp. 533–536, 1986.

[52] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal Policy Optimization Algorithms,”
Aug. 2017, arXiv:1707.06347 [cs]. [Online]. Available: http:
//arxiv.org/abs/1707.06347

[53] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to
the nonlinear dynamics of learning in deep linear neural networks,”
arXiv preprint arXiv:1312.6120, 2013.

[54] Y. Narang, K. Storey, I. Akinola, M. Macklin, P. Reist, L. Wawrzy-
niak, Y. Guo, A. Moravanszky, G. State, M. Lu, A. Handa, and
D. Fox, “Factory: Fast Contact for Robotic Assembly,” in Proceed-
ings of Robotics: Science and Systems, New York City, NY, USA,
June 2022.

[55] Y. Park, J. S. Bhatia, L. Ankile, and P. Agrawal, “Dexhub and
dart: Towards internet scale robot data collection,” arXiv preprint
arXiv:2411.02214, 2024.

[56] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[57] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” arXiv preprint arXiv:2107.04034,
2021.

[58] T. Chen, M. Tippur, S. Wu, V. Kumar, E. Adelson, and P. Agrawal,
“Visual dexterity: In-hand reorientation of novel and complex object
shapes,” Science Robotics, vol. 8, no. 84, p. eadc9244, 2023.

[59] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[60] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta,
“R3M: A Universal Visual Representation for Robot Manipulation,”
Nov. 2022, arXiv:2203.12601 [cs]. [Online]. Available: http:
//arxiv.org/abs/2203.12601

[61] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey,
M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al.,
“Isaac gym: High performance gpu-based physics simulation for
robot learning,” arXiv preprint arXiv:2108.10470, 2021.

[62] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[63] R. Tedrake, Robotic Manipulation. Course Notes for MIT 6.421,
2024. [Online]. Available: http://manipulation.mit.edu

[64] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan,
R. Singh, Y. Guo, H. Mazhar, A. Mandlekar, B. Babich, G. State,
M. Hutter, and A. Garg, “Orbit: A unified simulation framework
for interactive robot learning environments,” IEEE Robotics and
Automation Letters, vol. 8, no. 6, pp. 3740–3747, 2023.

[65] P. Hansen-Estruch, I. Kostrikov, M. Janner, J. G. Kuba, and
S. Levine, “IDQL: Implicit Q-Learning as an Actor-Critic Method
with Diffusion Policies,” May 2023, arXiv:2304.10573 [cs]. [Online].
Available: http://arxiv.org/abs/2304.10573

[66] S. Han, I. Shenfeld, A. Srivastava, Y. Kim, and P. Agrawal, “Value
augmented sampling for language model alignment and personaliza-
tion,” 2024.

[67] T. G. Rudner, C. Lu, M. A. Osborne, Y. Gal, and Y. Teh, “On
pathologies in kl-regularized reinforcement learning from expert
demonstrations,” Advances in Neural Information Processing Sys-
tems, vol. 34, pp. 28 376–28 389, 2021.

[68] A. Galashov, S. M. Jayakumar, L. Hasenclever, D. Tirumala,
J. Schwarz, G. Desjardins, W. M. Czarnecki, Y. W. Teh, R. Pascanu,
and N. Heess, “Information asymmetry in kl-regularized rl,” arXiv
preprint arXiv:1905.01240, 2019.

[69] J. Schulman, X. Chen, and P. Abbeel, “Equivalence between policy
gradients and soft q-learning,” arXiv preprint arXiv:1704.06440,
2017.

[70] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889–1897.

[71] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-
learning for offline reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 1179–1191, 2020.

[72] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” in
Proceedings of the fourteenth international conference on artificial
intelligence and statistics. JMLR Workshop and Conference Pro-
ceedings, 2011, pp. 627–635.

[73] Y. Fan and K. Lee, “Optimizing ddpm sampling with shortcut fine-
tuning,” arXiv preprint arXiv:2301.13362, 2023.

[74] Y. Fan, O. Watkins, Y. Du, H. Liu, M. Ryu, C. Boutilier, P. Abbeel,
M. Ghavamzadeh, K. Lee, and K. Lee, “Dpok: Reinforcement
learning for fine-tuning text-to-image diffusion models,” 2023.

[75] Z. Li, R. Krohn, T. Chen, A. Ajay, P. Agrawal, and G. Chalvatzaki,
“Learning multimodal behaviors from scratch with diffusion policy
gradient,” 2024.

[76] W. Goo and S. Niekum, “Know your boundaries: The neces-
sity of explicit behavioral cloning in offline rl,” arXiv preprint
arXiv:2206.00695, 2022.

[77] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin,
P. Abbeel, A. Srinivas, and I. Mordatch, “Decision transformer:
Reinforcement learning via sequence modeling,” Advances in neural
information processing systems, vol. 34, pp. 15 084–15 097, 2021.

[78] Z. Wang, J. J. Hunt, and M. Zhou, “Diffusion policies as an
expressive policy class for offline reinforcement learning,” arXiv
preprint arXiv:2208.06193, 2022.

[79] L. Yang, Z. Huang, F. Lei, Y. Zhong, Y. Yang, C. Fang, S. Wen,
B. Zhou, and Z. Lin, “Policy representation via diffusion probability
model for reinforcement learning,” 2023.

[80] H. Hu, S. Mirchandani, and D. Sadigh, “Imitation Bootstrapped
Reinforcement Learning,” Nov. 2023, arXiv:2311.02198 [cs].
[Online]. Available: http://arxiv.org/abs/2311.02198

[81] M. Wołczyk, B. Cupiał, M. Ostaszewski, M. Bortkiewicz, M. Zajkac,
R. Pascanu, Ł. Kuciński, and P. Miłoś, “Fine-tuning reinforcement
learning models is secretly a forgetting mitigation problem,” arXiv
preprint arXiv:2402.02868, 2024.

[82] A. Ajay, J. Wu, N. Fazeli, M. Bauza, L. P. Kaelbling, J. B.
Tenenbaum, and A. Rodriguez, “Augmenting physical simulators
with stochastic neural networks: Case study of planar pushing and
bouncing,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 3066–3073.

[83] A. Kloss, S. Schaal, and J. Bohg, “Combining learned and analytical
models for predicting action effects from sensory data,” The Inter-
national Journal of Robotics Research, vol. 41, no. 8, pp. 778–797,
2022.

[84] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossing-
bot: Learning to throw arbitrary objects with residual physics,” IEEE
Transactions on Robotics, vol. 36, no. 4, pp. 1307–1319, 2020.

[85] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Müller, V. Koltun,
and D. Scaramuzza, “Champion-level drone racing using deep rein-
forcement learning,” Nature, vol. 620, no. 7976, pp. 982–987, 2023.

[86] G. Schoettler, A. Nair, J. Luo, S. Bahl, J. A. Ojea, E. Solowjow,
and S. Levine, “Deep reinforcement learning for industrial insertion
tasks with visual inputs and natural rewards,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2020, pp. 5548–5555.

[87] Y. Jiang, C. Wang, R. Zhang, J. Wu, and L. Fei-Fei, “Transic: Sim-
to-real policy transfer by learning from online correction,” arXiv
preprint arXiv:2405.10315, 2024.

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2203.12601
http://arxiv.org/abs/2203.12601
http://manipulation.mit.edu
http://arxiv.org/abs/2304.10573
http://arxiv.org/abs/2311.02198

[88] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez,
P. Agrawal, and V. Sitzmann, “Neural descriptor fields: Se (3)-
equivariant object representations for manipulation,” in 2022 Inter-
national Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 6394–6400.

[89] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor,
B. Bergeron, V. Gadepally, M. Houle, M. Hubbell, M. Jones,
A. Klein, L. Milechin, J. Mullen, A. Prout, A. Rosa, C. Yee,
and P. Michaleas, “Interactive Supercomputing on 40,000 Cores
for Machine Learning and Data Analysis,” in 2018 IEEE
High Performance extreme Computing Conference (HPEC), Sep.
2018, pp. 1–6, iSSN: 2377-6943. [Online]. Available: https:
//ieeexplore.ieee.org/document/8547629

[90] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity
of rotation representations in neural networks,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2019, pp. 5745–5753.

[91] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel,
“High-dimensional continuous control using generalized advantage
estimation,” arXiv preprint arXiv:1506.02438, 2015.

[92] J. Levinson, C. Esteves, K. Chen, N. Snavely, A. Kanazawa, A. Ros-
tamizadeh, and A. Makadia, “An analysis of svd for deep rotation
estimation,” Advances in Neural Information Processing Systems,
vol. 33, pp. 22 554–22 565, 2020.

[93] A. R. Geist, J. Frey, M. Zobro, A. Levina, and G. Martius, “Learning
with 3d rotations, a hitchhiker’s guide to so(3),” 2024.

[94] M. Reuss, M. Li, X. Jia, and R. Lioutikov, “Goal-Conditioned
Imitation Learning using Score-based Diffusion Policies,” Jun. 2023,

arXiv:2304.02532 [cs]. [Online]. Available: http://arxiv.org/abs/2304.
02532

[95] B. Tang, M. A. Lin, I. Akinola, A. Handa, G. S. Sukhatme, F. Ramos,
D. Fox, and Y. Narang, “Industreal: Transferring contact-rich as-
sembly tasks from simulation to reality,” in Robotics: Science and
Systems, 2023.

[96] X. Zhang, S. Jin, C. Wang, X. Zhu, and M. Tomizuka, “Learning
insertion primitives with discrete-continuous hybrid action space for
robotic assembly tasks,” in 2022 International conference on robotics
and automation (ICRA). IEEE, 2022, pp. 9881–9887.

[97] O. Spector and D. Di Castro, “Insertionnet-a scalable solution for
insertion,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
5509–5516, 2021.

[98] Y. Tian, K. D. Willis, B. A. Omari, J. Luo, P. Ma, Y. Li, F. Javid,
E. Gu, J. Jacob, S. Sueda et al., “Asap: Automated sequence
planning for complex robotic assembly with physical feasibility,”
arXiv preprint arXiv:2309.16909, 2023.

[99] J. Luo, Z. Hu, C. Xu, Y. L. Tan, J. Berg, A. Sharma,
S. Schaal, C. Finn, A. Gupta, and S. Levine, “SERL: A Software
Suite for Sample-Efficient Robotic Reinforcement Learning,”
Jan. 2024, arXiv:2401.16013 [cs]. [Online]. Available: http:
//arxiv.org/abs/2401.16013

[100] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in
neural information processing systems, vol. 35, pp. 27 730–27 744,
2022.

https://ieeexplore.ieee.org/document/8547629
https://ieeexplore.ieee.org/document/8547629
http://arxiv.org/abs/2304.02532
http://arxiv.org/abs/2304.02532
http://arxiv.org/abs/2401.16013
http://arxiv.org/abs/2401.16013

APPENDIX I
IMPLEMENTATION DETAILS

A. Training Hyperparameters

1) State-based behavior cloning: We provide a detailed set of hyperparameters used for training. General hyperparameters
for all models can be found in Tab. III, while specific hyperparameters for the diffusion models are in Tab. IV, and those
for the MLP baseline are in Tab. V.

TABLE III. Training hyperparameters shared for all state-based BC models

Parameter Value

Control mode Absolute end-effector pose
Action space dimension 10
Proprioceptive state dimension 16
Orientation Representation 6D [90]
Max LR 10−4

LR Scheduler Cosine
Warmup steps 500
Weight Decay 10−6

Batch Size 256
Max gradient steps 400k

TABLE IV. State-based diffusion pre-training hyperparameters

Parameter Value

U-Net Down dims [256, 512, 1024]
Diffusion step embed dim 256
Kernel size 5
N groups 8
Parameter count 66M
Observation Horizon To 1
Prediction Horizon Tp 32
Action Horizon Ta 8
DDPM Training Steps 100
DDIM Inference Steps 4

TABLE V. State-based MLP pre-training hyperparameters

Parameter Value

Residual Blocks 5
Residual Block Width 1024
Layers per block 2
Parameter count 11M
Observation Horizon To 1
Prediction Horizon Tp (S / C) 1 / 8
Action Horizon Ta (S / C) 1 / 8

2) State-based reinforcement learning: Below, we list the hyperparameters used for online reinforcement learning fine-
tuning. The parameters that all state-based RL methods methods shared are in Tab. VI. Method-specific hyperparameters for
training the different methods are in the tables below, direct fine-tuning of the MLP in Tab. VII, online IDQL in Tab. VIII,
and the residual policy in Tab. IX. The different methods were tuned independently, but the same hyperparameters were
used for all tasks within each method.

TABLE VI. Hyperparameters shared for all online fine-tuning approaches

Parameter Value

Control mode Absolute end-effector pose
Action space dimension 10
Proprioceptive state dimension 16
Orientation Representation 6D [90]
Num parallel environments 1024
Max environment steps 500M
Critic hidden size 256
Critic hidden layers 2
Critic activation ReLU
Critic last layer activation Linear
Critic last layer bias initialization 0.25
Discount factor 0.999
GAE [91] lambda 0.95
Clip ϵ 0.2
Max gradient norm 1.0
Target KL 0.1
Num mini-batches 1
Episode length, one leg 700
Episode length, lamp/round table 1000
Normalize advantage true

TABLE VII. Hyperparameters for direct fine-tuning of MLP

Parameter Value

Update epochs 1
Learning rate actor 10−4

Learning rate critic 10−4

Value function loss coefficient 1.0
KL regularization coefficient 0.5
Actor Gaussian initial log st.dev. -4.0

TABLE VIII. Hyperparameters for training value-augmented diffusion sampling (IDQL)

Parameter Value

Update epochs 10
Learning rate Q-function 10−4

Learning rate scheduler Cosine
Num action samples 20
Actor added Gaussian noise, log st.dev. −4

TABLE IX. Hyperparameters for residual PPO training

Parameter Value

Residual action scaling factor 0.1
Update epochs 50
Learning rate actor 3 · 10−4

Learning rate critic 5 · 10−3

Learning rate scheduler Cosine
Value function loss coefficient 1.0
Actor Gaussian initial log st.dev. -1.0

3) Image-based real-world distillation: We use a separate set of hyperparameters for real-world experiments, presented
in Tab. X. The main difference is that we found in experimentation that the transformer backbone in [19] worked better
than the UNet for real-world experiments. These models are also operating from RGB observations instead of privileged
states, and we provide parameters for the image augmentations applied to the front camera in Tab. XI and the wrist camera
in Tab. XII.

TABLE X. Training hyperparameters for real-world distilled policies

Parameter Value

Control mode Absolute end-effector pose
Action space dimension 10
Proprioceptive state dimension 16
Orientation Representation 6D [90]
Max policy LR 10−4

Max encoder LR 10−5

LR Scheduler (both) Cosine
Policy scheduler warmup steps 1000
Policy scheduler warmup steps 5000
Weight decay 10−3

Batch size 256
Max gradient steps 500k
Image size input 2× 320× 240× 3
Image size encoder 2× 224× 224× 3
Vision Encoder Model ResNet18 [59]
Encoder Weights R3M [60]
Encoder Parameters 2× 11 million
Encoder Projection Dim 128
Diffusion backbone architecture Transformer (similar to [19])
Transformer num layers 8
Transformer num heads 4
Transformer embedding dim 256
Transformer embedding dropout 0.0
Transformer attention dropout 0.3
Transformer causal attention true

TABLE XI. Parameters for front camera image augmentation

Parameter Value

Color jitter (all parameters) 0.3
Gaussian blur, kernel size 5
Gaussian blur, sigma (0.01, 1.2)
Random crop area 280× 240
Random crop size 224× 224
Random erasing, fill value random
Random erasing, probability 0.2
Random erasing, scale (0.02, 0.33)
Random erasing, ratio (0.3, 3.3)

TABLE XII. Parameters for wrist camera image augmentation

Parameter Value

Color jitter (all parameters) 0.3
Gaussian blur, kernel size 5
Gaussian blur, sigma (0.01, 1.2)
Random crop Not used
Image resize 320× 240 → 224× 224

B. Action and State-Space Representations

a) Action space: The policies predict 10-dimensional actions consisting of absolute poses in the robot base frame as the
actions and a gripper action. In particular, the first 3 dimensions predict the desired end-effector position in the workspace,
the next 6 predict the desired orientation using a 6-dimensional representation described below. The final dimension is a
gripper action, 1 to command closing gripper and -1 for opening.

b) Proprioceptive state space: The policy receives a 16-dimensional vector containing the current end-effector state and
gripper width. In particular, the first 3 dimensions is the current position in the workspace, the next 6 the current orientation
in the base frame (the same 6D representation), the next 3 the current positional velocity, the next 3 the current roll, pitch,
and yaw angular velocity, and finally the current gripper width.

c) Rotation representation: We use a 6D representation to represent all orientations and rotations for the predicted
action, and proprioceptive end-effector pose orientation [90,92]. The poses of the parts in state-based environments are
represented with unit quaternions. While this representation contains redundant dimensions, it is continuous, meaning that
small changes in orientation lead to small changes in the representation values, which can make learning easier [90,92,93].

This is not generally the case for Euler angles and quaternions. The 6D representation is constructed by taking two arbitrary
3D vectors and performing Gram-Schmidt orthogonalization to obtain a third orthogonal vector to the first two. The resulting
three orthogonal vectors form a rotation matrix that represents the orientation. The end-effector rotation angular velocity is
still encoded as roll, pitch, and yaw values.

d) Action and state-space normalization: All dimensions of the action, proprioceptive state, and parts pose (for state-
based environments), were independently scaled to the range [-1, 1]. That is, we did not handle orientation representations
(quaternions/6D [90]) in any particular way. The normalization limits were calculated over the dataset at the start of behavior
cloning training. They were stored in the actor with the weights and reused as the normalization limits when training with
reinforcement learning. The normalization used here follows the same approach as in previous works such as [19,94]. This
normalization method is widely accepted for diffusion models. In [94], the input was standardized to have a mean of 0 and
a standard deviation of 1, instead of using min-max scaling to the range of [0, 1]. This approach was not tested in our
experiments.

C. Image Augmentation

During training, we apply image augmentation and random cropping to both camera views. Specifically, only the front
camera view undergoes random cropping. We also apply color jitter with a hue, contrast, brightness, and saturation set to
0.3. Additionally, we apply Gaussian blur with a kernel size of 5 and sigma between 0.1 and 5 to both camera views.

At inference time, we statically center-crop the front camera image from 320x240 to 224x224 and resize the wrist camera
view to the same dimensions. For both the random and center crops, we resized the image to 280x240 to ensure that essential
parts of the scene are not cropped out due to excessive movement.

The values mentioned above were chosen based on visual assessment to balance creating adversarial scenarios and keeping
essential features discernible. We have included examples of these augmentations below.

Fig. 13. Left: Examples of augmentations of the wrist camera view, consisting of color jitter and Gaussian blur. Right:
Examples of augmentations for the front view also consist of color jitter and Gaussian blur augmentations and random
cropping.

APPENDIX II
TASKS AND ENVIRONMENT

A. Tasks details and reward signal

1) Furniture assembly tasks: We detail a handful of differentiating properties for each of the three tasks we use in
Tab. XIII. one leg involves assembling 2 parts, the tabletop and one of the 4 table legs. The assembly is successful if
the relative poses between the parts are close to a predefined assembled relative pose. When this pose is achieved, the
environment returns a reward of 1. That is, for the one leg task, the policy received a reward of 1 only at the very end
of the episode. For round table and lamp, which consists of assembling 3 parts together, the policy receives a reward

signal of 1 for each pair of assembled parts. E.g. for the lamp task, when the bulb is fully screwed into the base, the first
reward of 1 is received, and the second is received when the shade is correctly placed.

2) Real-to-sim task: mug-rack: This task involves the robot picking up a coffee mug and hanging it by the handle on
one of two pegs on a rack. See Fig. 14 for task illustration. This task is interesting for two main reasons. First, we don’t
have any CAD models for the objects. Instead, we used scanned imports of real-world objects (obtained with the ARCode
app on the iPhone App Store). Second, the task has inherent multi-modality in that the mug can be hung in one of two
ways for each of the two pegs.

The diffusion and residual policy system works well for this task. First, the base diffusion model captures the task’s
multimodality and sometimes hangs the mug on both pegs. Furthermore, the residual RL procedure keeps this multimodality
intact as the base model is frozen.

(a) Example task initialization of the
mug-rack task.

(b) Example of hanging the mug on the
lower rack.

(c) Example of hanging the mug on the
upper rack.

Fig. 14. Overview of the mug-rack task to showcase the real-to-sim capabilities one can leverage with our pipeline. This
also shows how reward signals can be inferred directly from data instead of being hand-designed. Finally, as the task can
be completed in one of several ways, this task also tests the policies’ capability to deal with multi-modality.

3) High-precision, Factory task: peg-in-hole: To push the limits of precision in simulation, controller, and policy,
we pick one of the insertion tasks from the Factory task suite [54], which involves grasping a peg and inserting in a hole
with a 0.2mm clearance, i.e., 25x tighter than the FurnitureBench [5] tasks. See Fig. 15 for task illustration.

Our approach also worked out of the box on this task, using the same hyperparameters as for the FurnitureBench tasks.
Here, we achieve 5% success rate in pre-training and ∼99% in fine-tuning. Good performance at this task is essentially
entirely dominated by the ability to locally adjust the peg until it lines up with the hole, and the high final success rate
achieved by our approach reflects that the local nature of the corrections learned by our residual policy is well aligned with
such task scenarios.

(a) Example task initialization of the peg-in-hole task. (b) Example of task completion when the peg is fully inserted.

Fig. 15. Overview of the peg-in-hole task we add to push the requirement for precision. We find that the pipeline as
presented works well with the same hyperparameters used for the furniture tasks.

4) Bimanual, high-precision task: biman-insert: To test whether our method, ResiP, also works for precise tasks
with larger action spaces, we create a simple bimanual industrial assembly task that we term biman-insert. See Fig. 16
for an example initial and final state and Fig. 18 for several random initial states. We design the task by creating simple
meshes and importing them into the MuJoCo [62] physics engine. We demonstrate the task using the augmented reality-based
teleoperation interface DART [55]. All subsequent training uses the same code and hyperparameters as all the other tasks.
This task has a relatively short horizon but has a 20-dimensional action space and relatively tight insertion tolerances. We
also perform this task at 50 Hz for policy control, showing that our approach is quite general.

(a) Example task initialization of the biman-insert task. (b) Example of task completion when the plate is fully
inserted.

Fig. 16. Overview of the biman-insert task we add to push the requirement for precision and bimanual coordination.
We find that the pipeline as presented works well with the same hyperparameters used for the furniture tasks and that the
increased action space poses no problem for mastering the task.

TABLE XIII. Task Attribute Overview

one leg round table lamp mug-rack peg-in-hole biman-insert

Mean episode length ∼500 ∼700 ∼600 ∼150 ∼200 ∼400
Parts to assemble 2 3 3 2 2 2
Num rewards 1 2 2 1 1 1
Dynamic object ✗ ✗ ✓ ✗ ✗ ✗
Precise insertions 1 2 1 0 1 1
Screwing sequences 1 2 1 0 0 0
Precise grasping ✗ ✓ ✗ ✗ ✗ ✗
Insertion occlusion ✗ ✓ ✗ ✓ ✗ ✗
Control frequency 10 Hz 10 Hz 10 Hz 10 Hz 10 Hz 50 Hz
Degrees-of-Freedom 7 7 7 7 7 14

B. Details on randomization scheme

The “low” and “medium” randomness settings we used for data collection and evaluation reflect how much the initial part
poses may vary when the environment is reset. We tuned these conditions to mimic the levels of randomness introduced in
the original FurnitureBench suite [5]. However, we found that their method of directly sampling random poses often leads
to initial part configurations colliding, requiring expensive continued sampling to eventually find an initial layout where all
parts do not collide.

Our modified randomization scheme instead initializes parts to a single pre-specified set of feasible configurations. Then,
it applies a randomly sampled force and torque to each part (where the force/torque magnitudes are tuned for each part and
scaled based on the desired level of randomness). This scheme allows the physics simulation to ensure parts stay out of
collision while providing a controlled amount of variation in the initial scene randomness.

The second way we modified the randomization scheme was to randomize the position of the U-shaped obstacle fixture
and the parts (the obstacle fixture was always kept in a fixed position in [5]). We reasoned that, for visual sim-to-real
without known object poses, we could only imperfectly and approximately align the obstacle location in the simulated and
real environment. Rather than attempting to make this alignment perfect, we instead trained policies to cover some range of
possible obstacle locations, hoping that the real-world obstacle position would fall within the distribution the policies have
seen in simulation. Fig. 17 shows examples of our different randomness levels for each task in simulation.

C. Adjustments to FurnitureBench simulation environments

In addition to our modified force-based method of controlling the initial randomness, we introduced multiple other
modifications to the original FurnitureBench environments proposed in [5] to enable the environment to run fast enough
to be feasible for online RL training. With these changes, we could run at a total of ∼4000 environment steps per second
across 1024 parallel environments. The main changes are listed below:

1) Vectorized reward computation, done check, robot, part, and obstacle resets, and differential inverse kinematics controller.
2) Removed April tags from 3D models to ensure vision policies would not rely on tags to complete the tasks. We tried

to align with the original levels of randomness, but only to an approximation.
3) Deactivate camera rendering when running the environment in state-only mode.
4) Correct an issue where the physics was not stepped a sufficient amount of time for sim time to run at 10Hz, and

subsequently optimize calls to fetch simulation results, stepping of graphics, and refreshing buffers.
5) Artificially constrained bulb from rolling on the table until robot gripper is nearby as the rolling in the simulator was

exaggerated compared to the real-world parts.

APPENDIX III
RGB SIM2REAL TRANSFER

a) Visualization of overlap in action space in real and sim: For data from the simulation to be useful for increasing
the support of the policy for real-world deployment, we posit that it needs to cover the real-world data. We visualize the
distributions of actions in the training data in Fig. 19. Since actions are absolute poses in the robot base frame, we can take
the x, y, z coordinates for all actions from simulation and real-world demonstration data and plot them. Each of the 3 plots
is a different cross-section of the space, i.e., a view from top-down, side, and front. In general, we see that the simulation
action distribution is more spread out and mostly covers real-world actions.

b) Visual Domain randomization: In addition to randomizing part poses and the position of the obstacle, we randomize
parts of the rendering which is not easily randomized by simple image augmentations, like light placement (changing
shadows), camera pose, and individual part colors. See Fig. 20 for examples of front-view images obtained from our domain
randomization and re-rendering procedure.

Task: one_leg, Randomness: low

Task: one_leg, Randomness: med

Task: lamp, Randomness: low

Task: lamp, Randomness: med

Task: round_table, Randomness: low

Task: round_table, Randomness: med

Fig. 17. Examples of initial scene layouts for the tasks from the FurnitureBench task suite [5], one leg, lamp, and
round table, with different levels of initial part pose and obstacle fixture randomness.

Fig. 18. Examples of initial scene layouts for the 3 non-FurnitureBench tasks, mug-rack, peg-in-hole, and
biman-insert, for their default level of randomness.

Fig. 19. Plots of the x, y, z action coordinates in the demo datasets for the one leg task in the real world and the simulator.
That is, each dot represents one action from one of the 40/50 trajectories. Red is from real-world demos, and blue is from
the simulator. Left: Top-down view, showing the x, y positions in the workspace visited. In the top right, the insertion point
is shown, where we see that the simulator has a wider distribution but could have covered better in the positive y-direction.
Middle: Side-view of the actions taken in the x, z plane. The insertion point is to the right in the plot; again, we see more
spread in the simulation data. Right: Front view of the y, z actions.

Fig. 20. Examples of the randomization applied when rendering out the simulation trajectories used for co-training for the
real-world policies.

APPENDIX IV
VISUALIZATION OF RESIDUAL POLICY ACTIONS

We hypothesize that the strength of the residual policy is that it can operate locally and make corrections to the base
action predicted by the pretrained policy operating on the macro scale in the scene. We show an example of this behavior
in Fig. 21. Here, we visualize the base action with the red line, the correction predicted by the residual in blue, and the net
action of the combined policy in green.

We find that the residual has indeed learned to correct the base policy’s actions, which often leads to failure. One
common example is for the base policy to be imprecise in the approach to the hole during insertion, pushing down with
the peg not aligned with the hole, causing the peg to shift in the gripper, which leads to a grasp-pose unseen in the
training data and the policy inevitably fails. The residual policy counteracts the premature push-down and correct the
placement towards the hole, improving task success. See video examples of this behavior on the accompanying website:
https://residual-assembly.github.io/.

APPENDIX V
EXTENDED VISION-BASED RESULTS AND ANALYSES

A. Performance Impact of Distillation

Next, we study how the quantity and quality of data generated by a ResiP policy impact the performance of vision-based
student policies in real-world evaluations. We generate this data by collecting successful trajectories from the ResiP teacher
across varied initial states and rendering corresponding camera observations. A vision-based student policy—which shares
the same architecture as the teacher but includes an additional image encoder—distilled from ∼1,000 teacher trajectories
reached 73% success on one leg, outperforming the 50% achieved by training the vision policy directly on human demos
(see Fig. 12). However, we observe a performance gap between the RL-trained ResiP teacher (98%) and the distilled
vision-based student (73%), even after performance saturates with additional data. To investigate whether this gap stems
from the change to visual input, we compared distillation performance between image-based and state-based students using
the same number of trajectories. Their comparable performance suggests that the modality shift is not the primary cause of
the performance gap. While DAgger-style online distillation might improve performance, we focused on offline distillation
as it better reflects real-world deployment constraints.

Therefore, we examine the impact of the distillation dataset size. Here, we scale up the number of state-based rollouts from
the trained RL policy and distill these to a state-based student. In Fig. 1 (Right), we observe that performance increases with
more data, from 78% success rate at 10k trajectories to 80% at 100k trajectories, though not reaching the teacher policy’s
98% success rate. The same trend is evident in Fig. 6 (though the saturation occurs earlier). These results demonstrate how
simulation-based distillation can complement existing training approaches by enabling the rapid generation of large-scale
synthetic datasets at a minimal cost. Beyond the data volume advantages, our RL teacher exhibits qualitatively different
behaviors, such as faster movements and improved corrective actions, suggesting that this synthetic data captures valuable
task strategies that could be expensive or impractical to demonstrate manually.

https://residual-assembly.github.io/

Fig. 21. Visualization of the effect of the residual policy during insertion, the phase requiring the most precision. The red
line shows the action commanded by the base policy. The blue is the correction predicted by the residual, and the green is
the net action. The residual learns to correct actions that typically lead to failure.

While DAgger [1] demonstrates strong sample efficiency - achieving better performance than BC with just ∼10k gradient
steps (800 rollouts)—it requires an expert policy for online data collection. Although we could theoretically apply DAgger
in simulation using our RL-trained expert policy (as demonstrated by [16] for point cloud inputs), this introduces significant
complexity to the pipeline and its effectiveness for RGB image-based distillation remains an open question for future
work. Instead, we demonstrate that a simple approach combining offline rendering of synthetic trajectories with real-world
co-training can achieve reasonable performance.

B. Real-World Evaluation

Finally, we evaluate the real-world performance of a sim-to-real policy trained on a mixture of a few (10/40) real-world
demonstrations (Real+Sim) and simulation data generated by the trained residual RL policy. We compare the co-trained
policy to a baseline model trained only on real-world demonstrations (Real-Only). We compare the success rates achieved
by each policy on two sets of 10 trials for the one leg task. In the first set, we randomize part poses, while in the second
set, we randomize obstacle poses (i.e., insertion location in the workspace).

We compare the co-trained policy to a baseline model trained only on real-world demonstrations. We define an evaluation
grid spanning the same ranges as the low randomization setting from the FurnitureBench simulation environment. We evaluate
each policy on two sets of 10 trials for the one leg task, with grid points sampling either part poses or obstacle poses (i.e.,
insertion location in the workspace). Each method is evaluated on the same set of grid positions to ensure fair comparison.

The results in Tab. II show that incorporating simulation data improves real-world performance (e.g., increasing task
completion rate from 20-30% to 50-60%). Qualitatively, the sim-to-real policy exhibits smoother behavior and makes fewer
erratic movements that might exceed the robot’s physical limits. Fig. 10 illustrates this through example trajectories: Row
(A) shows successful executions where the robot completes the full assembly sequence, while Row (B) demonstrates the
most common failure mode where, despite successfully grasping and transporting the parts, the policy fails to achieve precise
alignment between the table leg and the hole before releasing. This misalignment failure pattern mirrors what we observe
in the simulation, suggesting consistent challenges in achieving the required precision for insertion tasks.

To further probe the robustness conferred by training in simulation, we created a task variation where the part colors
are changed from black to white. When rolling out the policy trained on real demos of white parts, Real-Only, the robot
exhibited erratic behavior that caused the hardware to reach velocity limits on every trial we ran, as shown in Fig. 11 (A).
When including synthetic data rendered with parts in black, the resulting policy (Real+Sim-DR) can perform the task again

(see Fig. 11). The resulting performance was still inferior to the performance on white parts, which motivates further work
on closing the sim-to-real gap.

C. Quantitative Results Failure Mode Breakdown

Corner (10 / 10) Grasp (9 / 10)
Insert (6 / 10)

Screw (5 / 10) Success

Failure

Fig. 22. Sankey diagram for the success rate and failure points for the real-world rollouts with 40 real and 350 simulation
demos.

The diagram in Fig. 22 shows how successful and failed completion of individual sub-skills along the one leg task
amount to our overall final success rates reported in Tab. II (bottom row, corresponding to “40 real + 350 sim” with random
initial part poses and a fixed obstacle pose).

D. Extension of Pipeline to Unseen Settings

Here, we conduct further qualitative experiments to evaluate whether our simulation-based co-training pipeline can make
policies more robust to real-world parts with visual appearances that are unseen in real world demos. To test this, we
3D printed the same set of parts used in the one leg task in black, and rolled out various policies on these black parts
(rather than the white-colored parts used throughout our other experiments). This setting is especially relevant in industrial
domains where parts can come in a variety of colors to which the assembly system must be invariant (e.g., the same piece
of real-world furniture usually comes in many colors).

When deploying the policy trained on the same 40 demos as in the main experiment, which only had white, the policy
cannot come close to completing the task. The behavior is highly erratic and triggered the velocity limits of the Franka
on every trial we ran. We compare this baseline policy trained on differently colored parts to a policy co-trained on both
real and synthetic data from simulation. However, when creating the synthetic dataset for this test, we added in additional
randomization of part color, with an emphasis on black or gray colors in this case, as shown in Fig. 24. When we co-train a
policy on a mix of the same real-world demos containing only white parts as before, with a dataset of 400 synthetic demos
with varying part colors, the resulting policy can complete the task, as illustrated in Fig. 24 (and even when it fails at the
entire task sequence, the predicted motions are much more reasonable than the erratic policy which has overfit to real-world
parts of a specific color).

For example videos, please see the accompanying website: https://residual-assembly.github.io/. We note,
however, that the resulting policy is considerably less reliable than the corresponding policy rolled out with white parts,
which illustrates that there is still a meaningful sim2real gap.

APPENDIX VI
EXPANDED RELATED WORK

a) Learning robotic assembly skills: Robotic assembly has been used by many as a problem setting for various behavior
learning techniques [45,95]–[98]. Enabling assembly that involves multi-skill sequencing (e.g., fixturing → grasping →
insertion → screwing) directly from RGB images has remained challenging, especially without explicitly defining sub-skill-
specific boundaries and supervision. Concurrent work [87] explores a similar framework to ours on FurnitureBench tasks [5],
but instead supervises learned policies on a per-skill basis and incorporates 3D point clouds. IndustReal [95] also leverages
RL in simulation to train high-precision skills for tight-tolerance part insertion in the real world. However, they train their RL

https://residual-assembly.github.io/

Fig. 23. Randomizing the visual appearance of the scene in the simulator allows for more fine-grained control and varying
attributes that are hard to isolate in standard image augmentation techniques. Here, we illustrate how we can easily cover a
larger space of part appearances without jittering the colors of everything else in the scene in tandem.

Fig. 24. An example of a successful rollout of a policy co-trained on 40 real-world demos containing only white parts and
400 synthetic demos with part colors randomized.

policies from scratch using carefully-designed shaped rewards and curricula, whereas we bootstrap RL from BC pre-training,
which enables RL to operate with simple sparse rewards for achieving the desired assembly.

b) Complementary combinations of behavior cloning and reinforcement learning: Various combinations of learning
from demonstrations/behavior cloning and reinforcement learning have begun maturing into standard tools in the learning-
based control development paradigm [27,29]. For instance, demonstrations are often used to support RL in overcoming
exploration difficulty and improving sample efficiency [16,80,99]. RL can also act as a robustification operator to improve
upon base BC behaviors [16,29], paralleling the RL fine-tuning paradigm that has powered much of the recent advancement
in other areas like NLP [100] and vision [40]. Additionally, many successful robotics deployments [56]–[58] have been
powered by the “teacher-student distillation” paradigm, wherein perception-based “student” policies are trained to clone
behaviors produced by a state-based “teacher” policy, which is typically trained via RL in simulation. We demonstrate that
our residual RL approach for fine-tuning modern diffusion policy architectures can allow each of these complementary ways
to combine BC and RL to come together and enable precise manipulation directly from RGB images.

APPENDIX VII
EXTENDED LIMITATIONS AND FURTHER WORK

a) Real-world distillation: Our experiments have demonstrated the effectiveness of online learning versus offline or
passive learning through behavior cloning. Still, we employ only offline learning in our teacher-student distillation phase for
sim-to-real transfer, which will likely upper-bound the performance we can transfer to the real world. Combining our pipeline
with techniques for online learning could improve performance significantly. However, at this point, there are significant
challenges to overcome to make this practically applicable to the tasks studied herein.

The field is progressing rapidly, and we are excited to investigate how online learning in the real world can be made
practical for a broader set of tasks with longer horizons and less obvious ways of performing automatic state resets in follow-
up work. This effort further ties into a more general framework for pre-training and adaptation of robot systems where the
deployed robot can continue learning and adapting “on the job” after deployment. These investigations complement the
methods presented in this paper and are not in scope.

At the same time, our results indicate that making more capable systems only through increasing the collection of real-
world demos may also be fundamentally limited unless online learning is introduced as a fine-tuning step in those systems.

b) Locality of online correction learning: Though effective, we re-emphasize that our residual online reinforcement
learning framework has the fundamental limitation of being bound to the pre-trained policy and mainly performing locally
corrective actions. This limitation is both a strength and a weakness. First, the strong pre-trained prior allows RL to perform

the tasks and improve, and having a frozen prior helps stabilize training and prevent collapse. At the same time, the degree
to which online learning can generalize to states far from the training set is limited.

c) Limitations of simulators in contact-rich tasks: We have added an experiment for a task from the Factory [54] task
suite that pushes the accuracy of the simulator more than with the original FurnitureBench [5] tasks. This new task has
a clearance of 0.2mm for the insertion, which shows that the general BC + Residual RL framework also works well in
this setting. We did not show, however, that this transfers to the real world, and it would likely be more challenging than
in the original tasks for at least two reasons. First, with increased precision requirements, accurate calibration of physics
parameters between the actual and simulated environment will likely matter more. Second, performing manipulation from
vision when parts are smaller is more challenging.

APPENDIX VIII
WHY ACTION CHUNKING AND DIFFUSION POLICIES?

Simple feed-forward MLPs of modest size have shown impressive performance in many domains when trained with
RL [16,56,57], and offer a natural starting point for RL fine-tuning after BC pre-training. However, the standard MLP policies
trained to directly output single action control instead of a trajectory plan through an action chunk (MLP-S) fail across all
tasks we consider. Therefore, we also trained MLP policies with action chunking (MLP-C). When we introduce chunking,
MLP performance improves drastically, as shown in Tab. I. However, we also find that the more complex Diffusion Policy
(DP) architecture generally outperforms MLPs, especially in tasks of intermediate difficulty. For example, an improvement
from 10% success rate to 26% for the one leg task on medium randomness makes subsequent fine-tuning far easier.

In one case, lamp on low randomness, MLP-C outperformed DP. In qualitative evaluations, we find that DP has smoother
and faster actions, which is generally beneficial. Still, it seems to hurt performance in this case, as it tends to retract before
the gripper fully grasps the lamp base. We also find that all methods struggle with the most challenging tasks, on which
MLP-C and DP both achieve less than 5% success rate, indicating that there is still room for improvement in BC methods.
The peg-in-hole task, despite its relatively short horizon of ∼100 timesteps, proved particularly challenging for BC
methods. This task involves a ∼0.2 mm tolerance insertion, resulting in a 5% success rate. This poor performance on a short
yet precise task lends credence to the hypothesis that BC methods are ill-equipped to handle high-precision requirements.

APPENDIX IX
FURTHER ANALYSIS OF OFFLINE VERSUS ONLINE LEARNING

A. Distillation scaling analysis

The scaling analyses in Fig. 25 show the same trends as in Fig. 1 (right) and Fig. 6 for the tasks lamp and peg-in-hole.
We believe that this data point suggests that pure offline learning from demonstrations may not be sufficient for policies to
learn robust and reactive policies, pointing towards the necessity for techniques like RL to reach a high level of robustness
and reliability.

102 103 104 105

Number of Demonstrations

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

lamp
ResiP (Ours)
DP-DAgger
DP
MLP-S

(a) Scaling analysis for the lamp task. This task appears
significantly more conducive to offline learning than the other
tasks tested.

102 103 104

Number of Demonstrations

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

peg_hole
ResiP (Ours)
DP-DAgger
DP
MLP-S

(b) Success rates in exploration phase of training for one leg,
low randomness.

Fig. 25. We run similar scaling analyses as in Fig. 1 (right) and Fig. 6 for lamp and peg-in-hole. The general findings
of interactive learning are that it is more efficient and has higher asymptotical performance. However, the difference appears
to be much smaller for lamp and bigger for peg-in-hole. What drives these differences are left for future work.

0 2 4
Environment Step 1e8

0.4

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s R

at
e

one_leg_low
ResiP
Chunked Residual

Fig. 26. When learning a residual correction term that corrects the whole chunk at a time online, we find that the learning
is significantly slower (measured in environment steps) and saturates a lower asymptotic level.

B. Interactive distillation with DAgger

DAgger [1] can learn from scratch significantly more efficiently than pure BC measured in both gradient steps and samples.
We have added the DAgger performance to the scaling plot, shown in orange in Fig. 25. Consider the scaling plot in Fig. 1
(right) as an example. In ∼10k gradient steps, DAgger surpasses BC from 50 human demos trained with ∼100k steps.
After 10k steps, it has around 800 rollouts in the aggregated dataset. After around 20k gradient steps, it seems to surpass
the best-performing BC distillation runs using more than 10k rollouts and 500k gradient steps, at which point it has ∼1.5k
demonstrations in the replay buffer. This result highlights the effectiveness of online and interactive learning as opposed to
learning purely passively from an offline dataset. Furthermore, it highlights that the expert we query is an effective teacher.
It also highlights that for interactive learning to be effective, one needs to have a teacher ready to be queried as learning
progresses.

APPENDIX X
RESIDUAL RL ABLATIONS

A. Effect of fully versus partially closed-loop policies

One differentiating factor of our residual model from some prior work is that the base and residual models make predictions
at different frequencies, i.e., every 8 timesteps for the base model and every timestep for the residual model. Making
predictions with the most up-to-date information is likely an easier prediction problem, and we expect this to work better
than the “standard” setup of letting the residual correct the full output of the base model. When training a residual model
that corrects a whole chunk at a time but otherwise uses the same hyperparameters, we observe that training is less sample
efficient and performance saturates at a lower success rate. In particular, the chunked residual policy reaches ∼85% success
rate in about 250 million environment steps, while the one-step residual needs about 75 million.

To further probe the difference between fully closed-loop policies and those using chunking, we evaluate the policies
with perturbations added to the parts in the environment throughout the episode. In particular, at each timestep, 1% of parts
across the environments will have a random force applied to them. The forces are sampled from the same distribution as
the initial part randomization distribution.

See Fig. 9 and Tab. XIV for results. We generally see that the partially open-loop policies have a bigger drop in performance
when perturbations are introduced, around 20 percentage points compared to 12 for the one-step residual model.

Model No Perturb W/ Perturb Drop in SR

Standard RPPO 98% 86% 12 pp
Chunked RPPO 92% 73% 19 pp
Chunked pre-trained BC 52% 32% 20 pp
DAgger chunked student DP 90% 68% 24 pp

TABLE XIV. Success rates with/without perturbations for different models. SR = Success Rate, pp = percentage points.

B. Residual base policy ablation

a) MLP as base: To further tease apart what part of the diffusion policy that provides the most important performance
increase, the action chunking or the denoising diffusion process, we run the same residual PPO run for the one leg task as
before, but with the best-performing BC MLP model in place of the diffusion policy. The results are shown in Fig. 27a and
Fig. 27b. The resulting training dynamics are intriguing. Despite the initial success rate of the base model being close to
that of the diffusion model, the success rate drops markedly when exploration noise is introduced. This is especially visible
in the training performance in plot 2 below. We also notice that the evaluation performance drops as the residual model
explores and learns more. However, the residual is eventually able to find actions that the MLP responds better to and, in
the end, converges to a similar performance as the diffusion-based runs. In the more challenging task with higher initial
state randomness, the same initial dynamic plays out, but the training performance drops to zero, causing the learning to
collapse. We conclude that any base model achieving a high enough initial success rate can be plugged into our framework
(and, based on our BC experiments, a base model with chunking is likely to outperform one without chunking) but that
the expressivity and robustness to input noise offered by diffusion de-noising also contributes to downstream performance
benefits during residual RL.

b) ACT as base: To see if the robustness to noise and suitedness for residual learning is unique to the diffusion-type
model, we also implement and test using Action-Chunked Transformer (ACT) [6] as the base model for the one leg task
at low randomness. With some tuning, we find that the ACT model can achieve comparable performance as the diffusion
model, though slightly lower, in pre-training. In the fine-tuning phase, however, it functions as well and stably as the diffusion
model base, as shown in Fig. 27c. This suggests that the residual RL framework is suitable for a wide range of fine-tuning
applications and may be applied to fine-tune even larger and possibly multi-task models.

0 1 2 3
Environment Step 1e8

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

one_leg_low
DP
MLP-C

(a) Evaluation success rates for RL train-
ing for one leg, low randomness for
Diffusion and MLP base policy.

0 2 4 6
Environment Step 1e8

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

one_leg_med
DP
MLP-C

(b) Evaluation success rates for RL train-
ing for one leg, medium randomness
for Diffusion and MLP base policy.

0.0 0.5 1.0 1.5 2.0
Environment Step 1e8

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Su

cc
es

s R
at

e

one_leg_low
DP + Residual RL
ACT + Residual RL

(c) Evaluation success rates for RL train-
ing for one leg, low randomness for
Diffusion and ACT base policy.

Fig. 27. We compare the diffusion-based residual RL training performance with the best-performing MLP as the base model
in (a) and (b). As we can see, despite having similar pertaining performance (for low randomness), the MLP-based residual
model performs poorly compared to the diffusion-based one. On a higher randomness setting, it fails to complete the task. We
compare with using the ACT [6] as the base policy in (c). The pre-training performance is slightly worse, but performance
quickly catches up during online learning, indicating that the ACT model is also well-suited for residual learning.

C. Residual action scaling parameter ablation

A design choice we make is the parameter α = 0.1. The parameter choice is somewhat arbitrary and was informed by
some intuitions about the task. For example, since the residual model intends to make local corrections, we want to imbue
it with that inductive bias. In the normalized action space, the workspace is constrained to [-1, 1], and letting a σ = 1 for
the residual Gaussian model correspond to [-0.1, 0.1] on the macro scale seemed reasonable.

We have tested more values of the parameter α ∈ {0.01, 0.05, 0.2, 1.0}, but kept the resulting exploration noise on the
macro scale fixed (i.e., scaled with the value of α, so α1σ1 = α2σ2). The result, shown in the figure below, shows a
remarkable robustness to this parameter, and all cases have very similar performance.

We note a couple of observations. First, α = 0.2 seems to perform slightly better than our original α = 0.1. Second,
different levels of α also result in very different magnitudes of activations at the last layer, which impacts losses. This
experiment shows that the resulting performance does not differ significantly, but we suspect it could make training less
stable in harder settings.

0 1 2 3
Environment Step 1e8

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

0.01
0.1
0.2

0 1 2 3
Environment Step 1e8

0

2

4

6

8

10

12

Su
cc

es
s R

at
e

0.01
0.1
0.2

0 1 2 3
Environment Step 1e8

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Su
cc

es
s R

at
e

0.01
0.1
0.2

0 1 2 3
Environment Step 1e8

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

Su
cc

es
s R

at
e

0.01
0.1
0.2

Fig. 28. We test different values of the residual action scaling parameter α and test it for values α ∈ {0.01, 0.1, 0.2} while
adjusting the exploration noise to be such that the macro-level exploration is the same initially. We find that for success
rates in this task, the value is not crucial but does cause training dynamics to change, particularly the residual model output
norms and policy loss magnitude.

	Introduction
	Method
	Problem Formulation
	Base Policy Learning via Behavior Cloning
	Reactive Control via ResiP
	Sim-to-Real Transfer

	Experimental Setup
	Tasks and Environment
	System Configuration
	Evaluation protocol
	Primary Evaluation
	Robustness to Dynamic Disturbances
	Real-World Evaluation Protocol

	Baselines and Ablations
	Behavior Cloning Baselines
	Distribution Shift Analysis
	Reinforcement Learning Comparisons
	Closed-Loop Control Ablation
	Real-World Baselines

	Experimental Results
	Augmenting Trajectory Planning with Reactive Control
	Analyzing Failure Modes

	What drives performance of ResiP?
	Performance and Training Characteristics of RL Methods
	Impact of Distribution Shift
	Impact of Closed-Loop Control
	Robustness to Dynamic Perturbations

	Real-World Deployment
	Real-World Performance
	Understanding Performance Limitations

	Related Works
	Training diffusion models with reinforcement learning
	Residual learning in robotics

	Discussion
	References
	Appendix I: Implementation Details
	Training Hyperparameters
	State-based behavior cloning
	State-based reinforcement learning
	Image-based real-world distillation

	Action and State-Space Representations
	Image Augmentation

	Appendix II: Tasks and Environment
	Tasks details and reward signal
	Furniture assembly tasks
	Real-to-sim task: mug-rack
	High-precision, Factory task: peg-in-hole
	Bimanual, high-precision task: biman-insert

	Details on randomization scheme
	Adjustments to FurnitureBench simulation environments

	Appendix III: RGB Sim2Real Transfer
	Appendix IV: Visualization of Residual Policy Actions
	Appendix V: Extended Vision-Based Results and Analyses
	Performance Impact of Distillation
	Real-World Evaluation
	Quantitative Results Failure Mode Breakdown
	Extension of Pipeline to Unseen Settings

	Appendix VI: Expanded Related Work
	Appendix VII: Extended Limitations and Further Work
	Appendix VIII: Why Action Chunking and Diffusion Policies?
	Appendix IX: Further Analysis of Offline versus Online Learning
	Distillation scaling analysis
	Interactive distillation with DAgger

	Appendix X: Residual RL ablations
	Effect of fully versus partially closed-loop policies
	Residual base policy ablation
	Residual action scaling parameter ablation

